
OTT
O

-V
O

N
-G

U
ER

IC
KE-UNIVERSITÄ

T
M

A
G

D
E

B
U

RG

Otto–von–Guericke–Universität Magdeburg

Praktikumsbericht

Modelling and control of an

active hydro–pneumatic

suspension
von

Florian Knorn
(* xxx Dez. 1981 in Berlin)

1. April 2006

Eingereicht an die: Otto–von–Guericke–Universität Magdeburg
Fakultät für Verfahrens– und Systemtechnik
Prüfungsamt
Universitätsplatz 2
Postfach 4120, 39016 Magdeburg
Deutschland

Betreuer: Prof. Jens C. Kalkkuhl

Research & Technology
REI/AR, Vehicle Dynamics Systems
Hanns–Klemm–Str. 45,
71034 Böblingen
Germany

Table of contents

Acknowledgments v

Introduction vii

1 The existing system 1

1.1 Introduction . 1
1.2 Set–up of the system . 1
1.3 Outer control loops . 4
1.4 Inner loop . 5

2 The model 9

2.1 Introduction . 9
2.2 modelling of the components . 9
2.3 modelling of the system as a whole 12
2.4 Parameters and Validation . 14

3 Controller design 19

3.1 Introduction . 19
3.2 Input–output linearising controller 19
3.3 Sliding mode control . 20
3.4 Adaptive control . 24

4 Simulations 27

4.1 Introduction . 27
4.2 Set–up of the tests . 27
4.3 Nominal conditions . 28
4.4 Parameter perturbations . 29

Conclusion 31

A Simulink models 33

A.1 Simulation . 33
A.2 Car software . 35
A.3 Estimation and Validation . 36

B Source codes & other resources 37

B.1 Data treatment . 37
B.2 Parameter estimation . 41
B.3 Cookbook . 43

iii

iv TABLE OF CONTENTS

C Additional plots 47

C.1 Validation . 47
C.2 Controller testing . 49

Bibliography 53

Acknowledgments

I count myself in nothing else so happy

As in a soul remembering my good friends.

— Henry Bolingbroke in William Shakespeare’s
“The Tragedy of King Richard the Second”

A number of lucky coincidences have led to the opportunity to do my in-
ternship in the prestigious AG. I would like to kindly thank
Prof. Robert Shorten from the Hamilton Institute in Maynooth, Ireland for
recommending me to Prof. Jens Kalkkuhl who was my supervisor here at the
Vehicle Dynamics Systems group of Research & Technology.

It was a great honour for me to become part of his impressive group and field
of work. I enjoyed working together with Jens and the many other talented,
friendly and supportive people, and I fully appreciate the valuable time they
spent with me and the many things they taught me. I am very grateful for
the six months here in Böblingen as they allowed for many insights into the
interesting work of a state of the art research group in a large and renown
corporation, working on the very future of cars.

My fascination and love for cars has been greatly satisfied; I could not state
it better than with the words of Prof. Shorten from a private conversation with
me: “For an engineer, it hardly gets more exciting than with cars!”

Also, I am deeply indebted to Dr. Mehmet Akar and Carlos Villegas, two
former collegues from the Hamilton Institute, who helped me a lot from afar
with many technical and control theoretical issues.

Part of this great experience were also the following people, colleagues and
friends. I would like to thank them for the great time they made me have here
in the “Schwoobeländle” (titles omitted, alphabetical order): Adrian Thomys,
Anders Witt, Anne Ruhnke, Annekatrin Geier, Antonietta Angoretti, Arnaud
Sablé, Avshalom Suissa, Brad Schofield, Carlos Rafael Da Cunha, Christian
Arnold, Christophe Gosteaux, Daniela Wildenstein, Daniel Goldbach, Daniel
Keppler, Diego Gonzalez, Henning Everth, Jörg Schwarzmeier, Julia Frommelt,
Julika Steen, Katrin Thyrassa, Lawrence Louis Gilbert, Magnus Rau, Magnus
Lewander, Parshant Jagdish Narula, Rebecca Quattelbaum, Stefan Zanger,
Stephan Zschäck, Stephanie Rapphahn, Theresa Krippl, Ulrike Eilers, Verena
Wuchenauer, . . .

Finally I would like to express my deep gratitude toward my family as well
as my closer friends for their never ending support and love.

v

Introduction

The company

Just about every one knows and associates the name “Mercedes” to cars. It
is close to being an international synonym for high quality, solid yet luxurious
and innovative cars, “Made in Germany”.

However, the Corporation is much more than just Mer-
cedes. Its product range extends from small consumer cars to large commercial
vehicles, and contains many fascinating brands such as Maybach, Dodge, Jeep,
or smart as well as Evobus, Setra, or Sterling Trucks just to name a few.

This large multinational corporation employs close to 400,000 people, pro-
duces in 17 countries and sold in 2004 more than 4 million cars and 700,000
commercial vehicles. Continuing research and innovation lay the base of its
future and reputation, offering the customers the very best in terms of design,
quality, safety and also enjoyment of using one of its products. In the past year
alone, more than 5.7 billion Euro have been invested in research.

The Research and Technology is divided into many de-
partments. In Böblingen / Hulb, close to Stuttgart, I worked at the “Active
Safety and Driver Assistance Systems” sub–department (REI/AR), which is
part of the “Research E/E and Information Technology” department (REI). In
particular, I helped out in the Vehicle Dynamics Systems group of Avshalom
Suissa, supervised by Prof. Jens Kalkkuhl.

This group has several projects running at the moment, for instance vehicle
load estimation, drive–by–wire systems or one vehicle imitating the dynamic
behaviour and driving feeling of another (that is part of “rapid prototyping). I
would now like to briefly introduce the project I was working on.

The internship

The focus of my internship lay on improving a controller that was deployed in an
Active Hydro–Pneumatic suspension (AHP). This is a relatively new suspension
design with the particularity that it works without the classical mechanical
parts of a suspension, such as steel springs and dampers. Instead a hydraulic
system is used, which consists, roughly speaking, of a plunger cylinder, a flow
resistance, a hydro–pneumatic capacitor and a strong hydraulic pump together
with a fast response servo valve.

At the heart of each AHP suspension strut, there is a force controller, which
is responsible for tracking a certain desired force (calculated by other, higher
level or “outer loop” controllers). The current controller, which is of the PI–

vii

viii INTRODUCTION

type, does not allow for sufficient performance in the context of its application,
and it was my task, to come up with a “better” one.

Figure 1: The test car PEGaSOS.

In the bigger picture, our test vehicle “PEGaSOS”1 is part of the CEmACS2

project, an interesting public project spread across and funded by several in-
stitutions, such as Research & Technology (Germany), the
Hamilton Institute at NUI Maynooth (Ireland), Lund University (Sweden),
Glasgow University (Scotland) and SINTEF (Norway)3.

Among many other things, one aspect of the project is developing a test
vehicle that can be used as a simulator for the dynamics of other (and po-
tentially not, or not–yet–existing) vehicles. Using steer–by–wire, four–wheel–
steering and the AHP suspension, PEGaSOS will allow to realistically imitate
the handling characteristics and driving feeling of another vehicle that is given
only by its specific vehicle dynamics (reference) model.

The report

The structure of this “Praktikumsbericht” will roughly be as follows:

Chapter 1 introduces the set–up of the system as well as a rough overview
of the control structure involved. We shall not go into the technical details of

1 Prüfstand zur Entwicklung und Ganzheitlichen Simulation Optimierter FahrzeugSys-
temdynamik — testbed for the development and wholistic simulation of optimised vehicle
system dynamics

2 Complex Embedded Automotive Control Systems
3 Stiftelsen for INdustriell og TEknisk Forskning — Foundation for Scientific and Indus-

trial Research (at the Norwegian Institute of Technology)

ix

the hard– and software running on the car as it is less interesting for the scope
of this report.

The second chapter then will establish a mathematical model of the system.
Here, we will focus particularly on simplicity as this will facilitate the later
control design. The model will also be validated briefly with experimental
data.

In the third chapter, we design different types of new non–linear controllers
based on our mathematical model. Particular attention is put on their robust-
ness with respect to parameter uncertainties.

We shall finally test and compare in Chapter 4 the performance of the
different controllers. Extensive simulations are to shed some light on the desired
robustness with regard to parameter changes.

After some concluding remarks the Appendix holds some of the Simulink

models and Matlab files created and used during the internship, as well as
additional plots and files.

C H A P T E R 1

The existing system

We introduce the physical set–up of the AHP and

the concept of the existing cascaded control system.

The current force controller is described and we

show an example of its performance.

1.1 Introduction

This first chapter serves as a presentation of the set–up of PEGaSOS’s suspen-
sion and the control system related to it.

After introducing the physical make–up of the system we shall take a closer
look at the cascaded control systems involved. Here, the innermost control
task is to set and track a certain pressure in the cylinder, which translates into
a force then exerted by the piston. The reference force (pressure) is the result
of several higher (outer) control loops that, for instance, compensate the cars
tendency to roll in corners or pitch with changing longitudinal acceleration,
and, of course, to track a reference model when imitating another vehicle.

It is important to note that everything discussed here concerns a single
wheel only. In the car however, (but for the pump) four of these systems are
required, one for each wheel.

1.2 Set–up of the system

So let’s start by introducing the different parts of the AHP.

1.2.1 Components

The set–up of the hydro–pneumatic system is shown in Figure 1.1 on the fol-
lowing page. Here, one suspension strut is made up of a

– cylinder (index “z”), which is connected directly to the wheel1

– hydraulic capacitor (index “s”) or “gas spring”, consisting of two chambers:
one connected to the oil circuit, the other, separated by a membrane,
contains a gas

– laminar resistance between the cylinder and the capacitor

1 The cylinder is so–called plunger cylinder, as it is connected to the oil system on only
one side of the piston.

1

2 CHAPTER 1. THE EXISTING SYSTEM

Pump

psys

I

Servo–Valve

Reservoir

pres

Qv

xrel

pz

Ql

Cylinder Qs

Resistance

ps

Vs

Capacitor

Wheel

Figure 1.1: Basic set–up of the system and some of the state variables.

– hydraulic pump connected to the car’s engine

– 4/3 servo valve which controls the in– and outflow of oil to and from the
system

At this point, we have already made a number of simplifications. For in-
stance, one might also consider the resistances of the other conducts, or assume
the resistance not to be laminar.

1.2.2 Signals

As we are dealing with a hydraulic system, the major types of variables are
pressures and flows. Most of the signals — and the interconnection and –action
of the different parts of the system — are shown in Figure 1.2 on the next page.

We have the pressures in cylinder and capacitor (pz and ps), but also the
system pressure psys and the pressure in the reservoir pres. All these pressures
are measured by suitable sensors and are available for use in controllers.2

A few comments on psys: As the pump is connected directly to PEGaSOS’s
engine, psys is not always constant. The nominal pressure output of 180 bar
is guaranteed from around 2000 r.p.m. on, and we can safely assume that
this pressure level is available under normal conditions. However, it can drop
in cases (which should be prevented when tests are run). This is why we
technically consider psys to be a disturbance, as we do not have any influence

2 Concerning ps, I should rather say should, as I was to find out that the responsible sensors
for the two front wheels were not functioning, and the ones for the rear were anything but
calibrated.

1.2. SET–UP OF THE SYSTEM 3

I

psys

Fext

pz

ps

xrel

Servo–valve

pz

psys

I

Qv

Cylinder

Qs

Qv

xrel

pz

Resistance

pz

ps

Qs

Hydr. Capacitor

Qs ps

Quarter car

xrel

Fext pz

Figure 1.2: Signals in the system.

on it (in the scope of the system we consider here), although we can measure
it.

The reservoir pressure pres to the contrary is always constantly low, roughly
equal to atmospheric pressure, so usually around 1 bar.

The flow variables in the system are Qv and Qs, respectively corresponding
to the (directed) flows of oil from valve to cylinder and from cylinder to capac-
itor (the amounts of oil in those shall be called Vz and Vs). Additionally, we
allow for some leaking of oil, Ql, which is positive for oil leaving the system.
This could be oil leaving the system through some worn out fittings, especially
in the valve, where it may very well be that a certain amount of oil does not
flow into the system, but directly into the reservoir for instance.

We then have the control current for the valve I, which, for positive I, injects
oil into the system, and for negative I allows oil to leave it. The position of
the plunger is xrel; it is zero at the neutral (middle) position, positive if it is
“above” that position (cf. figure), negative when it is “below” it. We also allow
for some external force Fext(t), which could result from the car running over a
bump on the road for instance.

As mentioned above, a certain pressure in the cylinder translates (via the
effective surface of the plunger) into a force. This force, diminished by some
friction, will accelerate the body of the car sitting on top of the cylinder. The

Inputs Disturb. States Outputs

I psys xrel xrel

Fext ẋrel pz

Ql pz ps

ps

Table 1.1: Overview of key variables.

4 CHAPTER 1. THE EXISTING SYSTEM

movement of the body then results in a movement of the piston relative to the
body of the car, which is also measured by a sensor. The position of the piston
is called xrel; it is zero in the neutral (middle–) position of the plunger, and
positive if above it, i. e. when the wheel moves in– or upwards.

Before moving on to the different controllers, we finish this section on the
description of the basic set–up of the system with Table 1.1 which shows an
overview of the variables that are important from a systems theoretical point
of view.

1.3 Outer control loops

The cascaded control system of PEGaSOS’ AHP suspension contains two “lay-
ers”. Several (parallel) components calculate a desired force (or reference force)
on the outer layer, which is then to be set and tracked by the inner loop.

For an overview, the different control loops involved in the AHP are shown
in Figure 1.3. Double lines signify the flow of more than one signal. Again, all
this is on a per–wheel basis.

Warp

Skyhook

AktAKon

Accel.

Displ.

Add.

+

+

+

+

+

+

Fz,d

Force
control

I Suspension
(plant)

Inner loop

Figure 1.3: Basic set–up of the cascaded control system for one wheel.

1.3.1 Components

Good conceptual introductions to the topic can be found in [1], [2] and [6];
for reasons of confidentiality however we are limited here to only superficial
descriptions.

Warp control

This controller takes care of the warping of the car. Warping is generally
understood to be the cars (elastic) “twisting” along the longitudinal axis of
the car. If you increase the force exerted by diagonally opposite wheels, the
car’s chassis will be slightly (and usually not noticed by the driver) twisted, or
“warped”.

A number of interesting and useful things can be done with warping, but
this is an ongoing topic of research and thus strictly confidential.

1.4. INNER LOOP 5

Skyhook

Riding comfort is an essential feature of modern consumer cars. As its name
suggests, the Skyhook control loop tries to eliminate jerks, jolts or vibrations
resulting from bumpy or uneven roads, as if the car was not riding on the rough
ground, but “hooked” into the (presumably more comfortable) skies.

AktAKon

This abbreviation stands for Aktive AufbauKontrolle — active body control.
Unfortunately I cannot say anything beyond this, as it is also confidential.

Acceleration feed–forward

In addition to AktAKon, this feed–forward component is used to compensate
the cars tendency to pitch when accelerating or breaking, or roll when corner-
ing. Part of this taken care of by the AktAKon, but this component is used to
further speed up the compensation.

Displacement control

Each of the above parts does not care about the actual position of each of the
cylinder pistons. The range within which these are allowed to move is obviously
limited, and this control loop’s task is to watch that the pistons stay close to
the neutral (middle–) position, so that they have room in both directions to
move, if necessary.

Additional force control

For adding custom forces to the other ones, this simple controller is set–up
mainly for experimental reasons.

1.3.2 Functionality

As shown in Figure 1.3 on the preceding page, each controller basically “votes”
for a certain force to be exerted. These reference forces are then simply added
up and fed into the inner loop, which takes care of the executive part, i. e. ac-
tually tracking the resulting reference force. Obviously, the sketch above is of
rather simplified nature — the reference values for each of the outer controllers
for instance are not shown (they are supposed to be inside each controller).

Unfortunately, we cannot give an in–depth description of, for example, the
actual signals flowing in the outer loop. This is different, however, for the inner
loop, which will be presented in the next section.

1.4 Inner loop

We shall now take a quick look at the existing controller in the inner loop. By
its structure it is a PI–controller with a PT1 pre–filter (first order delay with
corner frequency of 8 Hz, corresponding to a time constant of about 20 ms).
Its input is the difference between current and reference force exerted by the

6 CHAPTER 1. THE EXISTING SYSTEM

cylinder, and its immediate output is a desired oil flow into (or out of) the
system.

As the actuator is the valve, which takes a specific control current and
“translates” it into the wanted oil flow, an inverse valve model is used to deter-
mine the necessary control current needed.

The inverse valve model (termed valve compensation) is nothing but a simple
inversion of the valve model proposed in Subsection 2.2.4 on page 10, i. e. (2.4)
is solved for I. However, instead of using measured pressure differences, as
done there, this inverse model uses a constant pressure difference of 100 bar.
Resulting deviations are automatically compensated by the controller’s inher-
ent robustness. Note that the valve compensation is also assumed to be part of
the controller; for that reason we let I be the controller’s output in Figure 1.3.

The controller gains from Fz,d − Fz to I are (including the inverse valve
model) kP = 0.30 mA/N for the proportional component and kI = 0.03 mA/N
for the integral part.

So in the Laplace–domain, its controller equation is

u = kpe′ + ki
e′

s

e′ =
1

0.02s + 1
(Fz,d − Fz)

(EPC)

with s being the Laplace variable.

I
[m

A
]

G
G
G
G
G
G
A

p
z

[b
ar

]
G
G
G
G
G
G
A

Time t [s] GGGGGGA

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

32

35

38

-200

0

200

Figure 1.4: Comparison of reference pressure (−−−−−−) with the actual cylinder
pressure (−−−−−−) when using the existing force controller.

To close this chapter we show the performance of the existing PID–controller
using some real data from the car. The task was to make the car pitch in a
sinusoidal motion, i. e. xrel was to describe a constant sine wave. The resulting

1.4. INNER LOOP 7

desired pressure signal is shown in Figure 1.4 on the preceding page along with
the actual measured response.

Although the achieved tracking performance is sufficient for normal driving
operations (i. e. keeping the car level, etc.), it can certainly be improved by
more advanced control concepts. These should be able to reduce the visible
phase lag for instance. We shall investigate these possibilities in Chapter 3,
but we first need to get a mathematical model of the system.

C H A P T E R 2

The model

Each of the system’s components will be modelled,

then a model for the whole system shall be derived.

Finally, we’ll give the values of all parameters

involved and validate the model.

2.1 Introduction

In this chapter, we would like to build a general model of the AHP. We will
assume a mass sitting on top of the suspension to be able to also simulate the
motion of the plunger in the cylinder.

We will introduce mathematical descriptions of the different parts to model
their behaviour, and then connect them together to find a model of the system
as a whole.

All models here focus on simplicity, i. e. we try to keep things as simple
as possible (but still sufficiently precise). That will later allow a relatively
inexpensive controller design and implementation.

At the end of the chapter the values for most of the parameters will be
given together with a number of friction models.

A more detailed description of the system and in depth physical background
can be found in the excellent Diplomarbeit by Magnus Rau, [7].

2.2 modelling of the components

We shall now give mathematical models for each of the components introduced
in Section 1.2 on page 1.

2.2.1 Cylinder

Again, focusing on simplicity, we take the approach that the oil inside the
cylinder is slightly compressible. A simple linear assumption then would be
that the current pressure is proportional to the current amount of oil in the
cylinder relative to some nominal oil volume.1 The proportionality factor here
corresponds to the bulk modulus of elasticity of the oil used.

pz = E
Vz

Vz0

1 That is, the volume of oil in the cylinder when it is in neutral (middle) position.

9

10 CHAPTER 2. THE MODEL

The total amount of oil in the cylinder corresponds to the integral over all the
flows involved, that is Qv, Qs, Ql but also over the change of volume resulting
from the piston movement, so

pz =
E

Vz0

[∫ t

0

(

Qv − Qs − Ql + ẋrelAz

)

dτ

]

with Az being the surface of the cylinder. We thus have

pz =
E

Vz0

[

xrelAz +

∫ t

0

(

Qv − Qs − Ql

)

dτ

]

(2.1)

2.2.2 Hydraulic capacitor

A simple way of modelling this element would be to assume a polytropic state
change of the gas in the chamber. When oil is forced into the capacitor, the gas
gets compressed, which results in an increase of pressure. This compression is
assumed to be adiabatic2 relative to some initial or nominal state (pa,Va):

ps = pa

(

Va

Vs

)κ

(2.2)

2.2.3 Laminar resistance

This is probably the simplest element in the system. Quite intuitively, the flow
through the valve is proportional to the difference in pressure on both sides:

Qs =
1

Rd

(

pz − ps

)

(2.3)

with Rd being the laminar resistance of the restrictor and the used conduits.

2.2.4 Servo valve

The valve to the contrary is a slightly more involved element. We limit ourselves
to a very superficial description of it. In a good approximation, the valve can
be seen as a restrictor with variable diameter. With increasing control current,
the valve opens proportionally and reduces its resistance. This works in two
directions: for positive I the system is connected to the pump, and due to
the high pressure level there, oil is forced into the system. A negative control
current results in the connection of the system to the reservoir, and with the
very low pressure there, oil flows out of the system.

2 That is no heat exchange with the environment takes place — an assumption justifiable
by the fact that the compression and decompression of the gas usually happen very fast.

2.2. MODELLING OF THE COMPONENTS 11

Inside the valve we have sharp, rectangular edges. For that reason, it is
common to assume that the flow is proportional to the square root of the
respective pressure difference. We also Concentrate all valve related gains into
a single gain kv, the overall gain of the valve. It describes what oil flow a
certain control current ultimately results in (for a certain pressure pz).

Saturating I at ±Is (as the opening fraction of the valve is, of course, phys-
ically limited), the model equations would then be

Qv(I, pz) =







kv sat(I)
√

psys − pz for I ≥ 0

kv sat(I)
√

pz − pres for I < 0
(2.4)

Obviously, because of the square root, this model is only valid when the
cylinder pressure is smaller than the pump pressure, and larger than the reser-
voir pressure, i. e. pres ≤ pz ≤ psys. This, however, is very unlikely to happen
under normal operating conditions.

Even using rather expensive high performance (aerospace industry) servo
valves with impressive dynamic behaviour, one could — in order to make the
model dynamically more precise — include for instance a PT2 term to account
for the small but existent dynamics in the valve. Obviously, the control piston
in the valve has a weight which already introduces delays through its inertia,
left alone a number of other factors causing further small delays.

Analysing real data, and in accordance with the manufacturer’s recommen-
dations, a deadbeat PT2 with (double) time constant T0 = 0.005 s, correspond-
ing to a corner frequency of 200 rad/s or about 31.8 Hz, gave best results.

2.2.5 Quarter car

As mentioned earlier, the pressure in the cylinder translates into some force that
pushes the piston outward. To determine the piston’s movement we assume a
mass (“quarter car”) sitting on the cylinder. The most classical approach then
would be to relate the acceleration of the mass to the sum of the forces acting
on it:

mẍrel = Fext(t) + mg + Ffr(ẋrel) − Azpz (2.5)

with m being the effective mass weighing down onto the suspension, g the
gravitational acceleration and Ffr representing all effects of friction involved.

As friction forces in the cylinder can have significant effects on the pressures
and thus must not be neglected, we now propose a number of friction models.
However, as they are not directly important in our later controller design, we
limit ourselves to only stating them:

(i) No friction: Ffr1(x2) ≡ 0

12 CHAPTER 2. THE MODEL

(ii) Coulomb friction3: Ffr2(x2) = −µrAzpz0 sin
(

tan−1(k0x2)
)

(iii) Coulomb and viscous friction: Ffr3(x2) = − sign(x2)
(

Fc1 + dv1 · |x2|
)

(iv) Coulomb, viscous and stiction friction:

Ffr4(x2) =
Fc2

π/2
tan−1(−k1x2) +

Fm2

π/2
tan−1(−k2x2) − dv2x2

A detailed description of these models can be found in [5] or in any physics
textbook; model (iv) was taken from [7]. Plots of these models are shown
in Figure 2.1.

Velocity x2 [m/s] GGGGGGA

Fr
ic

ti
on

fo
rc

e
F

fr
[N

]
G
G
G
G
G
G
A

Model (i)
Model (ii)
Model (iii)
Model (iv)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-150

-100

-50

0

50

100

150

Figure 2.1: Comparison of the different friction models suggested.

2.3 modelling of the system as a whole

Now that we have got mathematical model of each of the components involved,
we will combine them to derive a compact, non–linear state space model of the
system.

2.3.1 Desired System

We aim at creating a system with the following four state variables

x =









x1

x2

x3

x4









=









xrel

ẋrel

pz

ps









3 The “classical” and most basic model would probably be Ffr(x2) = − sign(x2)Fc, how-
ever, for simulation purposes (numerical issues) we prefer to use this continuous and smooth
function, which approximates the classical curve very well.

2.3. MODELLING OF THE SYSTEM AS A WHOLE 13

with single input

u = I

and multiple output

y =





y1

y2

y3



 =





xrel

pz

ps





2.3.2 Putting it all together

In order to obtain the system above, we start off by transforming (2.5) on
page 11 into

ẍrel =
1

m

(

Fext(t) + mg + Ffr(x2) − Azx3

)

(2.6)

Differentiating (2.1) on page 10 with respect to the time t and using (2.3),
we get the dynamic equation of the cylinder pressure pz

ṗz =
E

Vz0

[

Azẋrel + Qv − 1

Rd
(pz − ps) − Ql

]

(2.7)

Concerning the pressure in the capacitor ps we can write, by differentiat-
ing (2.2) on page 10 with respect to t,

ṗs = paV
κ
a (−κ) V̇s V (−κ−1)

s

Using the simple relation V̇s = −Qs and (2.2) again

ṗs = paV
κ
a κ

1

Rd

(

pz − ps

)

(

paV
κ
a

ps

)

−(1+ 1
κ)

=
κ

RdVa p
1
κ
a

(

pz − ps

)

p
(1+ 1

κ)
s (2.8)

With (2.4) on page 11 and (2.6)–(2.8) we can now establish the system as
desired above:

ẋ1 = x2 (2.9a)

ẋ2 = K1(t) + ϕ(x2) − a1x3 (2.9b)

ẋ3 = a2x2 − a3x3 + a3x4 − K2 + b(x3, u) sat(u) (2.9c)

ẋ4 = a4 (x3 − x4)xκ̄
4 (2.9d)

y1 = x1 (2.9e)

y2 = x3 (2.9f)

y3 = x4 (2.9g)

14 CHAPTER 2. THE MODEL

with the following substitutions:

K1(t) =
Fext(t)

m
+ g K2 =

E

Vz0
Ql ϕ(x2) =

Ffr(x2)

m

a1 =
Az

m
a2 =

EAz

Vz0
a3 =

E

RdVz0

a4 =
κ

RdVa p
1
κ
a

κ̄ = 1 +
1

κ

and

b(x3, u) =















Ekv

Vz0

√

psys − x3 for u ≥ 0

Ekv

Vz0

√
x3 − pres for u < 0

Based on the above system and parameters we created for simulation and
validation purposes a Simulink model, which is described in more detail in
Appendix A on page 33.

2.4 Parameters and Validation

To complete this chapter on modelling, we shall present the values for all of the
parameters mentioned earlier and introduced so far, and validate them showing
an example of how well our mathematical model actually allows to describe the
system.

2.4.1 Parameters

A considerable amount of time has been spent on estimating some of the pa-
rameters in the system — a common problem in real live applications is that
many parameters cannot be found in textbooks, calculated or measured di-
rectly with sufficient precision. Also, most of PEGaSOS’ suspension is custom
built, thus there are no manufacturing manuals or technical detail sheets to
consult.

The identification was done using, of course, the above model together with
measurements taken from the car. Matlab’s fminsearch was then set–up
to fine–tune some of the parameters in question, the objective being the min-
imisation of the quadratic error between the system states and the measured
behaviour of the real system (to be more precise, a linear combination of the in-
tegrals over the squared deviations of pz and xrel). A more detailed explanation
of the process can be found in Section B.2 in the Appendix.

With the parameter estimation done, we can now show all the relevant
parameters together with their respective values and units in Table 2.1 on the
facing page.

Note that it is impossible to give a function or representation for Fext(t),
as it depends on many outside factors, especially on the particular driving
manoeuvre. If the car is standing still however, K1(t) would disappear. For
these reasons K1(t) does not appear in the table. Please also note the comment
in Subsection 1.2.2 on page 2 concerning psys.

2.4. PARAMETERS AND VALIDATION 15

Par. Value Unit Par. Value Unit

m 365 kg g 9.81 m/s2

E 2.00 · 108 Pa Vz0 8.16 · 10−5 m3

Ql ≈ 0 m3/s Az 10.2 · 10−4 m2

Rd 2.08 · 109 Pa/(m3/s) pa 4.26 · 106 Pa
Va 1.13 · 10−4 m3 κ 1.36 –
kv 5.90 · 10−7 (m3/s)/(Pa

1
2 A) Is 1.00 A

psys 180 bar pres 1 bar

K2 ≈ 0 Pa/s a1 2.80 · 10−6 m
a2 2.50 · 109 Pa/m a3 1.18 · 103 s−1

a4 7.76 · 10−11 (m2/s)/(Pa1+ 1
κ)

µr 2.5 · 10−2 – pz0 35.0 · 105 Pa
Fc1 75 N dv1 25 N/(m/s)
Fc2 150 N Fm2 100 N
dv2 20 N/(m/s) k0 55.1 · 105 s/m
k1 1937 s/m k2 −50.0 s/m

Table 2.1: Values for the different parameters in the system.

2.4.2 Simulation

Together with these parameters, we are now able to simulate and run our
model of the AHP. In Figure 2.2 below we show the effect of three different
stimulations on the system, that is two impulses of different width, amplitude
and sign, as well as a sinusoidal control current input.

I
[m

A
]

p
z
,
p
s

[b
ar

]
x

re
l
[m

m
]

Time t [s] GGGGGGA

pz
ps

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

-50

0

50

25

35

45

-150

0

150

Figure 2.2: Comparison the different system states for a certain input.

16 CHAPTER 2. THE MODEL

Looking at the effect of the first impulse, we can see (in both cylinder and
capacitor) that at first pressures build up to a certain level. Oil is forced into
the system, but at the beginning (as the piston is not moving), most of it has
to go into the capacitor. The increase of pz and ps starts to create a force
that is greater than that generated by the weight of the car — the plunger
is accelerated outwards. When it starts moving, the available volume in the
cylinder increases, oil car flow back from the capacitor, and pressures decrease.

Once the plunger (and quarter car mass) are moving they have to be stopped
again when the oil input ceases. Here, the opposite of the above description is
happening (i. e. oil is taken from the capacitor resulting in a lack of pressure,
which in turn results in a deceleration, as the weight force of the car is bigger
than that generated by the piston).

There is not too much to discuss for the sinusoidal part, just that the plunger
has a slight outward moving trend. This should be due to some stiction friction
related effects at the beginning of the sine.

Generally, the capacitor pressure is slightly “dragging behind” pz, and its
amplitude stays below it as well. This behaviour can be understood intuitively
considering the set–up of the system and the resistance between both elements.

2.4.3 Validation

To finish off this chapter on modelling, we shall quickly give two examples
of how well our model and choice of parameters allows to describe the real
system, for it is important to get an idea of the quality of the results from our
theoretical and experimental system analysis.

I
[m

A
]

p
z

[b
ar

]
x

re
l
[m

m
]

Time t [s] GGGGGGA

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

-10

0

10

30

35

40

-100

0

100

Figure 2.3: Comparison of simulated values (−−−−−−) with measurements taken
in the car (−−−−−−) for the input current shown in the first plot, using
friction model (ii) was used.

Standing still, on a flat surface, we made the car track a sinusoidal pitching
reference, i. e. all four wheels were to describe (all in parallel) a sinusoidal

2.4. PARAMETERS AND VALIDATION 17

vertical movement. We then recorded the displacement xrel, cylinder pressure
pz, control current I, as well as reservoir and system pressures pres and pz.

In the first plot of Figure 2.3 on the preceding page, we show the recorded
control current in the upper subplot. This current was also fed into our vali-
dation model iotest.mdl , see Section A.3 on page 36 for more details.

Using friction model (iv)4 and also including the PT2 term in the valve
model (as suggested in Subsection 2.2.4 on page 10) we get the result shown in
lower two subplots of Figure 2.3 on the preceding page: After a few transient
seconds, we can see that both xrel and pz are in good accordance with their
measured counterparts.

However, as the controller design in the next chapter will only focus on the
dynamic equation for pz, we shall separately validate this equation in particular.
We did so by not only using the measured current I as an input to our model,
but also using the measured xrel. That way, we are independent of the first
two state equations and whatever friction model chosen.

replacemen

I
[m

A
]

p
z

[b
ar

]
x

re
l
[m

m
]

Time t [s] GGGGGGA

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

-10

0

10

30

35

40

-100

0

100

Figure 2.4: Comparison of simulated values (−−−−−−) with measurements taken
in the car (−−−−−−) for the input current shown in the first plot and the
measured displacements from the third plot.

As we can see in Figure 2.4 above we have, here as well, a quite good
agreement between simulation and measurements, especially when considering
the simplicity of our model.

This demonstrated, we can now close this second chapter and move on to
designing different types of controllers based on the model we derived above.

4 The corresponding plots for models (i) to (iii) are shown in Section C.1 on page 47.

C H A P T E R 3

Controller design

In this chapter, we design different types of

controllers, starting with an input–output

linearising controller, followed by several sliding

mode and one adaptive controllers.

3.1 Introduction

Based on the model (2.9) on page 13 of the AHP we will design different types
of controllers.

We will begin with an input–output linearisation based controller, followed
by a simple sliding mode controller. We will then refine it by using a continuous
approximation of the switching laws as well as adding some integral action.

The last controller will be adaptive (Lyapunov function based). The per-
formance of these controllers is then demonstrated in the last chapter.

Note that in this chapter we only focus on x3,d, denoting a desired or
reference pressure (along with its derivative ẋ3,d). In the software already
running in the test vehicle the outer control loops ask for a certain cylinder
force to be created. This objective is however equivalent with tracking a specific
pressure, as x3,d = pz,d = Fz,d/Az.

3.2 Input–output linearising controller

For an excellent introduction to the topic, the reader is referred to [8]. Going
right into medias res, we find without any problems that the system has relative
degree ν = 1, as, from (2.9c) and (2.9f),

ẏ2 = ẋ3 = a2x2 − a3x3 + a3x4 − K2
︸ ︷︷ ︸

f(x)

+ b(x3, u) sat(u) (3.1)

i. e. we need to derive the output vector only once to “see” the input. Now,
assuming that we have perfect knowledge of x2, x3, x4, all the parameters
involved and the (state dependent) control coefficient b(x3, u) it is straightfor-
ward that

u =
1

b(x3, u)

(

− f(x) + v
)

v = ẋ3,d − kp · (x3 − x3,d)

(IOL)

19

20 CHAPTER 3. CONTROLLER DESIGN

will lead to direct action of the new input v on ẋ3 (as long as we do not sat-
urate u). For v we could then set up a for example a simple P–controller. A
strictly positive controller gain kp > 0 will result in an exponentially decaying
tracking error

e := x3 − x3,d (3.2)

This can easily be seen by inserting (IOL) into (3.1). We then have

ė + kpe = 0

which represents asymptotically stable error dynamics. Therefore, if initially
e(0) = 0 and ė(0) = 0, perfect tracking is achieved (as then e(t) ≡ 0 for t ≥ 0).

If the initial error is non zero, it will decay exponentially to zero — the
higher kp, the faster the convergence and the better the tracking (but usually
the higher the actuator costs also).

As simply and elegant this approach is, it only works in the ideal case
where on the one hand we have a perfect model together with perfectly correct
parameters, and on the other hand exact measurements of three of the four the
state variables. As this rather utopic precondition will certainly not be met
in a real application we must introduce some robustness against uncertainties
and imprecision.

3.3 Sliding mode control

In light of the above limitations, it is imperative to design a more robust
controller. A classical approach would be a sliding mode controller.

3.3.1 Basic set–up

Focusing on (2.9c) on page 13, one usually can have a guess of the f(x) term,
let’s call it f̂(x). Additionally, one should be able to bound the estimation
error by some F > 0, that is

∣

∣

∣f(x) − f̂(x)
∣

∣

∣ ≤ F (3.3)

One then introduces the so called sliding surface s, and sets, for instance,

s(x, t) = e (3.4)

again e being the tracking error (3.2). The next step in the classical sliding
mode controller design would be to demand ṡ = 0, from which follows

ṡ = ė = ẋ3 − ẋ3,d = f(x) + b(x3, u)u − ẋ3,d
!
= 0

The best approximation of the continuous control law that can achieve ṡ = 0
would be

û = −f̂(x) + ẋ3,d

In order to guarantee the sliding condition without exactly knowing f(x)
one adds to û a term that is discontinuous across the surface s = 0, such as

3.3. SLIDING MODE CONTROL 21

u =
1

b(x3, u)

[

û − ks sign(e)
]

ks = F + η

(3.5)

where sign(e) is the signum function. With this set–up one can easily show
(see for example [8]) that

1

2

d
dt

e2 ≤ −η|e| (3.6)

which corresponds to a decreasing tracking error along all system trajectories.
It is clear that if we actually want to implement the controller, we need to

derive a suitable and correct F .

3.3.2 Bounding the uncertainties

We shall now determine F . This bound does not have to be constant — to the
contrary, if possible, F should depend on the state vector x to give us a tighter
bound on the estimation error.

We suppose that for each parameter in the system we can estimate or
calculate a nominal or mean value p. The real value of the parameter must
lay within a certain radius, that is we demand p − ∆p ≤ p ≤ p + ∆p, where
∆p is the maximum deviation allowed from the estimated value p. With this
notation we can write

F (x) ≤
∣

∣ f̂(x) − f(x)
∣

∣

≤
∣

∣ f(x, p1 + ∆p1, . . . , p3 + ∆p3) − f(x, p1, . . . , p3)
∣

∣

where pi = a2, a3,K2. A classical approach would be to use a first–order Taylor
series expansion of f(x, p1 + ∆p1, . . . , p3 + ∆p3) around the pi

F (x) ≤
∣

∣

∣

∣

∣

f(x, pi) +

3
∑

i=1

∣

∣

∣

∣

∂f

∂pi

∣

∣

∣

∣

∆pi − f(x, pi)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

3
∑

i=1

∣

∣

∣

∣

∂f

∂pi

∣

∣

∣

∣

∆pi

∣

∣

∣

∣

∣

to be able to bound F (x). Thanks to the multi–linear nature of f(x), we find

F (x) ≤
∣

∣

∣
|x2|∆a2 + (|x3| + |x4|)∆a3 + ∆K2

∣

∣

∣
(3.7)

The maximum deviations for the different coefficients and terms are combi-
nations of other “elementary” parameters, for each of which we can bound our
amount of uncertainty. Using the laws of error propagation, which boil down
to a similar Taylor series expansion approach (see for example [9]), we can then

22 CHAPTER 3. CONTROLLER DESIGN

determine ∆a2, ∆a3 and ∆K2:

∆a2 ≤
∣

∣

∣

∣

da2

dE

∣

∣

∣

∣

∆E +

∣

∣

∣

∣

da2

dAz

∣

∣

∣

∣

∆Az +

∣

∣

∣

∣

da2

dVz0

∣

∣

∣

∣

∆Vz

≤ Az

Vz0
∆E +

E

Vz0
∆Az +

∣

∣

∣

∣

−EAz

V 2
z0

∣

∣

∣

∣

∆Vz0

∆a3 ≤ 1

RdVz0
∆E +

∣

∣

∣

∣

− E

R2
dVz0

∣

∣

∣

∣

∆Rd +

∣

∣

∣

∣

− E

RdV 2
z0

∣

∣

∣

∣

∆Vz0

∆K2 ≤ Ql

Vz0
∆E +

E

Vz0
∆Ql +

∣

∣

∣

∣

−EQl

V 2
z0

∣

∣

∣

∣

∆Vz0

This done, we should note that we assumed a perfectly correct inverse valve
model. We are safe to do so, as any resulting deviations from it should also be
compensated by the robustness of the controller. However an important aspect,
that will almost always occur in real applications, needs to be addressed before
moving on.

3.3.3 Reducing chattering

In real systems, the switching resulting from a change of sign of s usually
cannot be done indefinitely fast (as required). This results in the problem called
chattering, where the controller output seems to be “quivering” about some
value. Mechanical parts of the system could be damaged by such behaviour
or significant structural vibrations can occur. Also, unwanted high frequency
dynamics may be excited, which could lead to instability of the system. In any
case, the controller will not function properly, not at all, or at least not in a
satisfactory and efficient way.

To reduce this problem, one possible approach would be to use a saturation
function instead of the signum function, i. e. introduce a finite slope around the
origin, that way preventing the sudden and abrupt switching.

This translates into a certain boundary layer around the tracking signal, that
is a “tunnel” within which the real output is kept by the control actions. The
downside of this is a reduced tracking precision, but this disadvantage is made
up for by the benefit of a significantly reduced and also controllable chattering.
Usually a good trade off between precision and general performance of the
controller can be achieved.

For those reasons, it is recommendable to replace sign(e) in the control
law (3.5) on the previous page with sat(e/ε), where ε is the tolerated deviation
from the reference signal (also called boundary layer width) and

sat(x) :=

{

x if |x| ≤ 1

sign(x) otherwise

So, the new control law now reads

u =
1

b(x3, u)

[

û − ks sat
(e

ε

)]

(SM1)

3.3. SLIDING MODE CONTROL 23

3.3.4 Extension

An important — and in our circumstance necessary — extension to the slid-
ing mode controller (SM1) would be to include integral action, a so–called
I–component. This will allow for compensation of a drifting K2, or a non–zero
current neutral position of the valve (due to mechanical problems one may need
to apply a constant but non–zero current to the valve to block any flow of oil).

We suggest two possibilities for integral action, the first simply adding an
integral component directly to the control law

u =
1

b(x3, u)

[

û − ksF (x) sat
(e

ε

)

+ ki

∫ t

0

edτ

]

(SM2)

the second including an integral part in the sliding surface, as suggested in [8]:
s = e + λ

∫ t

0
edτ , for λ > 0. This introduces an additional term −λe into the

controller equation, which would then be

u =
1

b(x3, u)

[

û − λe − k′

sF (x) sat
(s

ε

)]

s = e + λ

∫ t

0

edτ

(SM3)

Note all the integrators in the above discussion should be set to zero when
the controller is turned on (we used a little reset signal connected to all inte-
grators in the Simulink model which sends an impulse when the controller is
turned on).

3.3.5 Potential problems

The actual implementation of the controllers however may involve further prob-
lems. For instance, until now, we have considered a continuous plant and con-
troller. In reality, the plant of course is also continuous, but as we use digital
equipment in the car, the sensors data is sampled data. So the controller only
gets “snapshots” of the system’s state every Ts = 5 ms.

In a way, this can be interpreted as a dead–time (of the order of magnitude
of the systems sampling rate Ts) introduced to the system, and this is not and
cannot easily be dealt with directly using these types of controllers.

Also, the in some cases extremely large controller gain resulting from F (its
order of magnitude is roughly 108. . . 1010 !) can cause the system to become
unstable, or at least behave very “chattery”.

A simple but rather crude and unsophisticated solution to this problem
would be to just manually fix a relatively small and constant F . We chose,
however to use some scaling factors ks and k′

s to attenuate the effect of the
large F (x).

With these considerations we close our discussion on the design of a sliding
mode based controller and move on to a different control concept.

24 CHAPTER 3. CONTROLLER DESIGN

3.4 Adaptive control

A very good introduction to this discipline of control theory can be found in
the exhaustive book by Krstić et al., [4]. Our design procedure roughly follows
one of their suggestions.

Although we will hardly go into any details, the reader should be familiar
with basic stability theory of non–linear systems, especially Lyapunov func-
tions. If not, he may be referred to the excellent book by H. K. Khalil, [3].

Similar to the previous two controller types, we only focus on the dynamic
equation for the cylinder pressure, (2.9c) on page 13, although we now consider
the first three state dependent terms to be known.

3.4.1 Basic set–up

Let’s recall (2.9c) and transform it into

ẋ3 = a(t) − ϑ + b(x3, u)u (3.8)

where a(t) := a2x2−a3x3+a3x4 is supposed to be known and ϑ is the unknown
parameter we would like to have adapted (corresponding to K2).

We will start by introducing a Lyapunov function that guarantees (asymp-
totic) stability and convergence toward zero of both tracking and parameter
error. We then use its derivative to determine suitable control and parameter
adaptation laws:

V =
1

2
e2 +

1

2γϑ

e2
ϑ (3.9)

with, again, e := x3 − x3,d being the tracking error, eϑ the parameter error
eϑ := ϑ − ϑ̂ and γϑ > 0 the so–called adaptation gain (as we shall see later).

This Lyapunov function could intuitively be interpreted as a combined mea-
sure of error in both tracking and parameter adaptation. Clearly, we want it
to converge toward zero, corresponding to perfect tracking and parameter es-
timation, or, at least, have it never increase.

A sufficient condition for that would be that its derivative with respect to
the time t has to be be non–positive, i. e.

V̇
!
≤0 (3.10)

We can now use this condition to derive the controller structure and parameter
adaptation laws. Differentiating (3.9) with respect to the time t, we get

V̇ = ė e +
1

γϑ

ėϑ eϑ

There, ėϑ = ϑ̇ − ˙̂
ϑ ≃ − ˙̂

ϑ when we assume that the unknown parameter ϑ is
quasi constant. Replacing ẋ3 in ė = ẋ3 − ẋ3,d by (3.8), we find

V̇ =
[

a(t)−ϑ + ϑ̂
︸ ︷︷ ︸

=−eϑ

−ϑ̂ + b(x3, u)u − ẋ3,d

]

e − 1

γϑ

˙̂
ϑ eϑ

3.4. ADAPTIVE CONTROL 25

As indicated above, adding and removing ϑ̂ allows us to rearrange the equation,
and factorising by eϑ leads us to

V̇ =
[

a(t) − ϑ̂ + b(x3, u)u − ẋ3,d

]

e −
(

e +
1

γϑ

˙̂
ϑ

)

eϑ (3.11)

To meet our request (3.10) we could ask for two things

(i) the first term in (3.11) should be strictly negative,

(ii) the second term should be zero.

Letting

u =
1

b(x3, u)

[

ẋ3,d − a(t) + ϑ̂ − ka · e
]

(ADa)

with ka > 0 we have gained a suitable control law that would fulfill (i), as long
as e 6= 0 (otherwise perfect tracking is already achieved).

Concerning (ii), as eϑ is unknown, we have no other choice but to require
the term in parentheses to disappear, resulting in

˙̂
ϑ = −γϑe (ADb)

with γϑ > 0 being the adaptation gain. This equation represents the parameter
update law for ϑ̂.

It can easily been seen that with these two laws we are indeed able to meet
(3.10), as we now have

V̇ = −ka e2 ≤ 0

The inherent integral action of this controller should also allow for sufficient
compensation of any drifting oil leak flow constant or the like.

3.4.2 Potential problems

A number of important comments should be made at this point.

Initial conditions

In the above controller, we see a new state (that is ϑ̂) appearing. In simulation
and real application, we need to set some sensible initial conditions for it, as
well as for the reference signal.

For reasons of tracking performance and transient behaviour it is impor-
tant to chose these initial conditions wisely. The unknown parameter should
obviously be chosen close to its real value; the reference signal however should
be set as close to the current or initial state of the system as possible. Oth-
erwise, a very large control action might ponder on the system right when the
controller is turned on (this is also the case for the sliding mode controllers!).

Once an initial transient is overcome and tracking works well, the reference
can then be taken to where the system is to go.

26 CHAPTER 3. CONTROLLER DESIGN

Saturation

Large control action could lead to saturation of the actuator, as we have men-
tioned earlier. In that case, the integrators in the controllers would continue
to build up to higher and higher values, which result in large control actions
even if the tracking error has long decreased again.

So it is recommendable to include some mechanism in the system that
would, for example, hold these integrators in case of saturation. These are
so–called anti–wind–up mechanisms. Another way would be to not simply feed
e into the integrators, but instead use (e−kaw · [I − sat(I)]) with some suitable
k > 0. Whenever saturation of an actuator occurs, the integrators input would
be reduced by some amount proportional to the amount of saturation.

Such a mechanism is indispensable for instance when PEGaSOS’ engine is
running at idle speed: Then, the pressure generated by the pump usually drops
below what is necessary for holding the car’s weight, and the car begins to sink
slowly (usually just one wheel is “sacking” in). In that corner, the respective
controller with integral action will soon open the valve to the maximum (i. e. I
saturates), but there is nothing the valve nor the cylinder can do, as there is
insufficient system pressure.

During that time, the integrators are accumulating more and more tracking
error. When the driver then revs up the engine again, and enough pressure
is provided to hold the car, the controller keeps saturating the valves, even
though the cylinder has already “caught up”.

In that case, without an anti wind–up mechanism, the piston could keep
moving until it hits the physical end of the cylinder, possibly causing damage
to the suspension strut!

Malfunctioning sensors

As mentioned earlier, an actual problem I was having in testing these controllers
was, that (to everyones surprise) the ps sensors were not working. To overcome
this problem, Dr. Akar and I developed sliding mode controllers that do not
require those measurements. As these are ongoing topics of research, and
potential subjects of publications, we decided for now not to give away any
details on these.

With these remarks we close this chapter on controller design; the con-
trollers created above shall now be tested in simulation.

C H A P T E R 4

Simulations

In this last chapter we set the parameters of the

different controllers developed earlier, and use our

simulation to test their performance, especially

subjecting them to various parameter disturbances.

4.1 Introduction

We tested the controllers in different situations such as modifying the valve’s
response to a certain control current and other parameter changes. In various
plots we shall compare and comment on the reactions and performance of each
controller.

It is very important to run these tests, as on the one hand we only have a
rather simplified model of the system, and on the other hand we either do not
know the correct parameters, or the parameters might drift (for instance, the
properties of the hydraulic spring strongly depend on the temperature).

Again, to everyone’s surprise we were lacking reliable ps measurements,
which unfortunately kept me from actually testing the controllers in the car.
This would certainly have been an integral part of this report. For that reason,
this chapter only presents results from simulations.

The good news is, however, that the malfunctioning sensors will be taken
care of in the next overhaul of the car. Besides, controllers have been developed
that can do without this information.

To facilitate readability throughout the chapter, we will use the following
abbreviations for the different controllers:

– SM2: Sliding mode controller (SM2) on page 23

– SM3: Sliding mode controller (SM3) on page 23

– AD: Adaptive controller (ADa) on page 25

– EPC: Existing PID–controller (EPC) on page 6

4.2 Set–up of the tests

Before looking at the results of the simulations, we shall describe the testing
conditions, and also list our choice of parameters for three of our controllers.

27

28 CHAPTER 4. SIMULATIONS

4.2.1 Test conditions and disturbances

It is certainly interesting to see how the controllers work under nominal con-
ditions, i. e. when each parameter in the plant really has the value we assumed
it to have (of course, this is only possible in simulations).

But with regard to a real application of the controller, it is also necessary
to check what effect various types of parameter changes have; this is testing
the robustness of the controllers, for which they have been designed.

There are several disturbances we inflicted on the system. We change valve
parameters, such as adding a constant1 current offset to I or changing the valve
gain. We also manipulated some plant parameters like a2, a3 and κ̄.

In all the simulation runs we used friction model (iv).

4.2.2 Controller parameters

Certainly, our particular choice of parameters is a preliminary one, and should
be refined especially in conjunction with real measurements.

However, as proper experiments were not possible, only limited time has
been spent on fine tuning the controllers here, so there is certainly room for
further improvements, especially when tuning can be done in the car.

So here is the list of parameters chosen.

– SM2: ks = 0.5, ki = 50000

– SM3: k′

s = 0.5, λ = 5

– AD: ka = 8000, θ(0) = 0, γθ = 10000

We left out the η parameter introduced in the design of the sliding mode
controllers, as its value is negligible before the large values of F (or already
there “included”).

Let’s now take a look at the results from our simulations.

4.3 Nominal conditions

In this section we present a test of the performance of the controllers under
nominal conditions, meaning that controller and plant use exactly the same
parameter values (for instance, the inverse valve model is perfectly the inverse
of the valve in the plant, or f(x) does perfectly cancel the corresponding parts
in the plant).

The relevant plots from our simulation are shown in Figure 4.1 on the next
page. We can see that when EPC is used there is again the noticeable phase
lag between reference and actual value, as already observer in the measurement
data at the end of Chapter 1. Also, the amplitude of the oscillations is not
matched very well, and there is a (only very slowly decreasing) pressure offset
for the constant parts. However, the impulses are followed relatively good, with
only little overshoot.

1 Actually, not a constant offset was added from t = 0 on, but a ramp offset current,
saturated at ±50 mA, was used, so that the offset starts at zero, but reaches ±50 mA within
about 0.3 s. This generates a smoother transition.

4.4. PARAMETER PERTURBATIONS 29
p
z

[b
ar

]
G
G
G
G
G
G
A

EPC SM2

p
z

[b
ar

]
G
G
G
G
G
G
A

Time t [s] GGGGGGA

SM3

Time t [s] GGGGGGA

AD

0 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 8

33

34

35

36

37

33

34

35

36

37

33

34

35

36

37

33

34

35

36

37

Figure 4.1: Comparison of simulated performance of each controller, looking
at reference pressures pz,d (−−−−−−) and actual pressures pz (−−−−−−) for
each controller (using friction model (iv), nominal conditions).

Looking at SM2, we see the phase lag disappear. Additionally, the ampli-
tude of the sinusoidal part is tracked much better. However, there is a much
more pronounced overshoot.

Similar comments hold for SM3, with the difference there here the overshoot
at the step changes is slightly less pronounced.

The adaptive controller AD follows the sine part best, but shows a fast and
only lightly damped oscillating overshoot at the impulse.

All three new controllers however show no constant error offset, thanks to
their I–components, and also feature much better tracking characteristics. The
cost of that performance on the downside are stronger overshoots.

But how do the controllers react to plant parameter changes?

4.4 Parameter perturbations

As mentioned earlier, it is more interesting and important to investigate the
impact of parameter changes on the controllers performance.

In Figure 4.2 on the following page we added an offset of +50 mA at valve
level in the plant. We can see that the integral part of the EPC is not strong
enough and the resulting constant tracking error is only slowly decreasing.

Each of the new controllers to the contrary can compensate rather quickly
for the offset. Once it is taken care of (this takes less than a second), their
performance is similar to that of the nominal case.

Another perturbation tested here is a changed valve gain. Surprisingly, even
a large change of +20% does not seem to have a strong impact on any of the
controllers, see Figure 4.3 on the next page.

30 CHAPTER 4. SIMULATIONS

We also ran tests with various other perturbations, but as the biggest con-
cern was regarding the precision of the valve model, we moved those results to
Appendix C on page 47.

p
z

[b
ar

]
G
G
G
G
G
G
A

EPC SM2

p
z

[b
ar

]
G
G
G
G
G
G
A

Time t [s] GGGGGGA

SM3

Time t [s] GGGGGGA

AD

0 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 8

33

34

35

36

37

33

34

35

36

37

33

34

35

36

37

33

34

35

36

37

Figure 4.2: Comparison of the performance of the controller, where pz,d (−−−−−−)
and pz (−−−−−−). Plant disturbance: +50 mA offset in I.

p
z

[b
ar

]
G
G
G
G
G
G
A

EPC SM2

p
z

[b
ar

]
G
G
G
G
G
G
A

Time t [s] GGGGGGA

SM3

Time t [s] GGGGGGA

AD

0 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 8

33

34

35

36

37

33

34

35

36

37

33

34

35

36

37

33

34

35

36

37

Figure 4.3: Comparison of the performance of the controller, where pz,d (−−−−−−)
and pz (−−−−−−). Plant disturbance: kv changed by +20%.

With the successful tests of three of our non–linear controllers we shall now
close this last chapter and move on to the conclusion of this report.

Conclusion

Let us close this report with a few concluding remarks on what has been
achieved sofar.

In the first Chapter, we introduced the active suspension and the set–up
of its different components. The “bigger picture” has been briefly explained,
showing the structure of the control system as well as discussing the function
of each part in the outer loop. We then introduced the existing PI controller
in the inner loop and showed some real measurements of its performance.

The following chapter dealt with getting a model of the system. After
modelling each component of the AHP one by one, we joined them up and
established a model of the system as a whole. We then validated the model
briefly, showing that on the one hand our complete model allows for a reason-
ably good fit of the experimental data collected, but also, on the other hand,
that the subsystem, describing just the pressures in cylinder and capacitor
seems to give good and consistent results as well.

Mainly focusing on the dynamic equation for pz, Chapter 3 was concerned
with deriving suitable controllers for the cylinder pressure (and hence the re-
sulting force exerted by the cylinder). Here, we designed an input–output
linearising controller, several sliding mode controllers and a Lyapunov function
based adaptive controller. Particular importance was attributed to including
integral action in the controllers.

Unfortunately it was not possible to test the controllers properly due to the
malfunctioning differential pressure sensors which are necessary to determine
ps. For that reason, the last chapter showed only results from simulations.2

We were able to get good results (and certainly better results compared to the
existing controller), especially with changed valve parameters.

Of course it would be interesting to also evaluate the performance of the
other controllers in the car. Also, a next step would be to evaluate our force
controllers together with the outer loop controllers, for example by again testing
PEGaSOS’ ability to imitate other car’s dynamic behaviours — one of the
ultimate goals of the CEMaCS project. A professional tuning of the controllers
on the test track would be the first step in this direction.

However, these open points are being addressed right now in the continuing
work in Böblingen and will certainly yield to interesting new results, that may
very well be published in the near future.

2 However, controllers that do not need of knowledge of ps were developed and successfully
tested in the car (for reasons of confidentiality they are not discussed in this report).

31

A P P E N D I X A

Simulink models

The following models have been moved to the Appendix in order no to clutter
up the body of the document.

A.1 Simulation

The main Simulink model is shown in Figure A.1 on the next page. Let us
comment on some of its “ingredients”.

A.1.1 Main model

As our system model (2.9) on page 13 is a (non–linear, non–autonomous) four–
dimensional first–order system of differential equations, the rough structure of
the Simulink model is clear. In the center, there are four integrator blocks,
with appropriate initial conditions (they are set externally for a more concise
layout).

At the left hand side of the model we have a number of sources correspond-
ing to external signals, disturbances or simple constants.

Three other, larger blocks contain subsystems, namely the different friction
models (cf. Subsection 2.2.5 on page 11), the servo–valve and the controller
(more precisely the controllers, with a convenient way of switching between
them).

Clearly, the model of the plant is a continuous model; in the car however,
as the sensor equipment is digital, the values are sampled (with Ts = 5 ms).
We imitate this setting by sampling the (continuous) system output with Ts.

The input to the controller is some artificial reference signal generated by
the two signal generators. To be closer to the real situation in the car, we also
sample the controller output, as it may be continuous (the adaptive controller
for instance introduces a continuous signal). This sampled signal is fed into
our valve model, and the resulting oil flow then acts on the plant. As noted
earlier, the controller block also contains the inverse valve model.

A.1.2 Valve model

The valve model shown in Figure A.2 on page 35 is quite straightforward, it
incorporates a saturation and the delay term suggested in Subsection 2.2.4 on
page 10. If for some reason the cylinder pressure should be higher than the
pump pressure (or lower than the reservoir pressure), the signum blocks come
into play — they allow for correct (and, together with the absolute value blocks,
mathematically sound) behaviour in this situation.

33

34
A

P
P

E
N

D
IX

A
.

S
IM

U
L
IN

K
M

O
D

E
L
S

.
x_1

External forces

Leaking

[x_3]

x_rel

−C−

p_z_0

p_z , p_s

p_z

−C−

p_sys

−C−

p_s_0

p_s

p_res

p_res

[x_4]

b . u

−K−
a_3

−K−
a_3

−K−
a_2

−K−

a_1

ZOH

I

p_sys

p_z

Q_vb⋅u

I
ctrl

p
z

p
sys

Servo−Valve

−C−

K_2

K_1(t)

1
s

xo

1
s

xo

1
s

xo

1
s

xo

I_ctrl

x_3

x_2

x_4

x_1

[p_z_soll]

Model 4

Friction

f(u)

Fcn

0

0F_fr

F
z,d

x
rel

p
z

p
s

p
res

p
sys

I

Controller

[x_1]

[x_3]

ZOH

x_2

x_2

x_1

.
x_3

x_3

x_3

x_3

x_4

x_4

.
x_2phi

b . u

y1

y2

y3

ps

pz

xrel

ẋrel

ẍrel

F
ig

u
re

A
.1

:
M

a
in

sim
u
la

tio
n

S
im

u
l
in

k
m

od
el.

A.2. CAR SOFTWARE 35

I ≥ 0

I < 0

1
Q_v

p_res

p_res

sqrt

sqrt

Physical
limits

b

Gain

Flowdirection

1
0.025^2s +0.05s+12

Delay

|u|

|u|

3
p_z

2
p_sys

1
I

Figure A.2: Valve block subsystem.

A.2 Car software

For reasons of completeness we also show the Simulink model which is running
on the car computer (more precisely, the model which is then compiled via
Simulink’s real–time workshop and then transferred to the car).

Confidentiality dictates however that we must not give away any further
details than a top level view of the model, shown in Figure A.3 below.

BIT_IN

bit_input_4002

analog_outputanalog_input

A_MUSTER_IN

r_A_soll

rpp_A_soll

F_soll_xx

r_A_vfd

rpp_A_vfd

F_vfd_xx

WMA_ext

VFD

Testsignal [0..7]

Auswahl Rad [0..4, 5=alle]

HubWankNick [0=aus,1..3]

Amplitude [V]

Startfrequenz f0 [Hz]

Sweepbereich df [Hz]

Sweepdauer T [s]

Zeitversatz rechts links [s]

Zeitversatz vorne hinten [s]

z_soll [mm]

w_soll [deg]

n_soll [deg]

BIT_IN

r_A_soll_HWN

rpp_A_soll_HWN

F_AHP_soll

warp_soll

U_Ventil

Sollwertgenerator

AHP_IN

Skalierung analog_in

AHP_IN

r_A_soll

rpp_A_soll

F_AHP_soll

BIT_IN

WARP_SOLL_IN

U_R

Regler

RTI Data

Ventile_Hand_xx

Handsteuerung

IMAR_IN

Testsignal

Auswahl_Rad

HubWankNick

Amplitude

Startfrequenz

Sweepbereich

Sweepdauer

Zeitversatz_rechts_links

Zeitversatz_vorne_hinten

z_soll

w_soll

n_soll

GUI

AHP_IN

Ansteuerung_SCHALTVENTILE

EN_PROPVENTILE

EN_Ventil

CAN CONTROLLER
 SETUP

DS4302CAN_SETUP_B1_C1
Group Id: RTICAN2

EN_PROPVENTILE

DS4002_BIT_OUT

AHP_IN

CAN_1 OUT

A_MUSTER_IN

IMAR_IN

CAN_1 IN

BIT_OUT_4002

i_Ventile_Hand_xx

i_Ventile_Regler_xx

Ansteuerung_SCHALTVENTILE

Analog_Out

Figure A.3: Simulink model of the car software.

36
A

P
P

E
N

D
IX

A
.

S
IM

U
L
IN

K
M

O
D

E
L
S

A
.3

E
stim

a
tio

n
a
n
d

V
a
lid

a
tio

n

T
ogether

w
ith

p
a

ra
_

id
e

n
t

,
listed

on
page

41,
w

e
used

the
S
im

u
l
in

k
m

odel
show

n
in

F
igure

A
.4

b
elow

not
only

to
sim

ulate
the

system
and

com
pare

m
ea-

sured
w

ith
real

output,
but

also
to

let
M

a
t
l
a
b

autom
atically

estim
ate

any
param

eter
w

anted.
T

he
m

–file
co

n
ve

rt_
d

a
ta

is
needed

to
convert

the
m

easurem
ents

into
a

form
at

suitable
for

this
m

odel
and

technique.
.
x_1

Error calculation

External forces

Leaking

1 workspace

−C−
x_rel_0

x comp

−C−

p_z_0

p_z comp

−C−

p_s_0

p_s comp

−C−
offset

Error model 2

−K−
a_3

−K−
a_3

−K−
a_2

−K−

a_1

I

p_sys

p_z

Q_vQ
v

I
ctrl

p
z

p
sys

Servo−Valve

Q_v

−C−

K_2

K_1(t)

1
s

xo

1
s

xo

1
s

xo

1
s

xo

I_ctrl

x_3

p_s_c

p_z_c x_4

x_r_c

x_1

Data/07_hl.mat

From Measurements

Model 4

Friction

f(u)

Fcn

0

F_fr

Demux

p_s_cp_z_c

x_4

x_3

x_1

x_r_c

−C−
offset

−C−
offset

−C−
offset

x_2

x_2

x_1

.
x_3

x_3

x_3

x_3

x_4

x_4

.
x_2

p_z

I

x_rel

p_s

ps

pz

xrel

ẋrel

ẍrel

F
ig

u
re

A
.4

:
io

te
st.m

d
l

u
sed

fo
r

pa
ra

m
eter

estim
a
tio

n
a
n
d

va
lid

a
tio

n
.

A P P E N D I X B

Source codes & other resources

We continue with a listing of some of the m–files which have been written in
the course of this internship, as well as a “cookbook” which gives a number of
step–by–step guides for the work with PEGaSOS.

B.1 Data treatment

The following function was written to convert data recorded in the car (using
the ControlDesk software by dSPACE GmbH) to a format that is compatible
with iotest.mdl .

Listing B.1: convert_data.m

1 function convert_data(filename , corner)
2 %CONVERT_DATA Convert ControlDesk .mat files for iotest.m dl
3 %
4 % CONVERT_DATA('filename') extracts measurements from
5 % filename.mat and stores the relevant signals in a file for
6 % usage in iotest.mdl.
7 %
8 % You must pass at least the filename (without the .mat), but
9 % you may also specify which corner you want the data to be

10 % extracted for:
11 % 1 − front left (default)
12 % 2 − front right
13 % 3 − rear left
14 % 4 − rear right
15 %
16 % Example: CONVERT_DATA('test1',3);
17 %
18 % The orginial .mat file should come from measurements taken
19 % in dSPACE ControlDesk. If you rename things in the
20 % accompanying kraft_regler.mdl, you must edit the eval −block
21 % below so that the correct signals are fetched!
22

23 % Last change: Florian Knorn, 03/21/2006, 13:50
24 % florian@knorn.org
25

26 if nargin < 1 || nargin > 2
27 error('Please give the name (without .mat) of datafile');
28 end
29

30 if ¬ischar(filename)
31 error('Please give the name (without .mat) of datafile');
32 end
33

37

38 APPENDIX B. SOURCE CODES & OTHER RESOURCES

34 if nargin == 1
35 corner = 1;
36 end
37

38 if corner < 1 || corner > 4 || (corner −ceil(corner)) 6= 0
39 error('Something''s wrong with the corner ...');
40 end
41

42 % sometimes it's "1", sometimes it's "vl" . . .
43 cornerstr = { 'vl' , 'vr' , 'hl' , 'hr' };
44 cornerstr = cornerstr{corner};
45

46 % explode the struct into single variables
47 eval(['explode_struct(''' ,filename, ''');']);
48 eval(['load ' ,filename, '_temp;']);
49

50 % create empty empty matrix
51 all=[];
52

53 % edit names here !!
54 eval(['all = [X;' , ... % Time
55 'New_controller__x_rel__Out1_1_' ,num2str(corner), ';' , ...% x_rel
56 'Labels__i_PropV_' ,cornerstr, ';' , ... % I
57 'New_controller__p_sys__Out1 ;' , ... % p_sys
58 'New_controller__p_z__Out1_1_' ,num2str(corner), ';' , ... % p_z
59 'New_controller__p_s__Out1_1_' ,num2str(corner), '];']); % p_s
60

61

62 % save variables
63 eval(['save ' ,filename, '_' ,cornerstr, ' all']);
64

65 % remove temporary file
66 eval(['!del ' ,filename, '_temp.mat;']);
67

68 % finish
69 disp(sprintf('Time + %i variables saved to %s.' , ...
70 length(all(:,1)) −1,[filename, '_' ,cornerstr]));

The data conversion function uses a subroutine called explode_struct .
When data is recorded in the car, ControlDesk saves everything into one large
structure. This structure is hard to handle, explode_struct “explodes” this
large structure and saves all the recorded signals into separate variables.

Listing B.2: explode_struct.m

1 function explode_struct(file_in, file_out)
2 %EXPLODE_STRUCT Convert struct to single variables
3 %
4 % EXPLODE_STRUCT('file_in','file_out') loads file_in.m at and
5 % "unpacks" all X and Y variables from any struct init to
6 % single variables and stores them into file_out.
7 %
8 % You may also omit the second argument, by default
9 % 'file_in_temp' will then be used as output file name.

10

11 % Last change: Florian Knorn, 03/14/2006, 11:50
12 % florian@knorn.org
13

14 % error checking

B.1. DATA TREATMENT 39

15 if nargin < 1 || nargin > 2
16 error('Please give at least an input filename');
17 end
18 if nargin == 1
19 if ¬ischar(file_in)
20 error('The input filename should be a string');
21 else
22 file_out = [file_in, '_temp'];
23 end
24 else
25 if ¬ischar(file_out)
26 error('The output filename should be a string');
27 end
28 end
29

30 % That done, let's load the file
31 eval(['load ' ,file_in]);
32

33 % Figure out the names of all the structs in the file
34 wers = whos; % struct of all the variables in the file
35 structs={};
36 for i=1:length(wers) % go through all varibales
37 if strmatch(wers(i).class, 'struct') % if struct
38 structs{length(structs)+1} = wers(i).name; % store name
39 end
40 end
41

42 % Now, recursively go through each struct found in the file
43 for cs_i = 1:length(structs) % current struct index
44 eval(['cs = ' ,structs{cs_i}, ';']); % current struct
45

46 % store x −data
47 X = cs.X.Data;
48

49 % store y −data
50 for i = 1:length(cs.Y)
51 varname = cs.Y(i).Name; % get variable name
52

53 % the varible names represent some sort of hiearchy,
54 % correspoding to the blocks in simulink. these levels
55 % are seperated with slashes (/). using a reg. expr.,
56 % try to fetch only the lowest 3 levels (otherwise the
57 % names may be too long for matlab).
58 [von,bis] = regexp(varname, '[^/]+/[^/]+/[^/]+$');
59

60 % if no match has been found, only look for lowest 2
61 if isempty(von)
62 [von,bis] = regexp(varname, '[^/]+/[^/]+$');
63 end
64

65 % make the resulting string suitable for a matlab
66 % variable name (remove slashes etc.). note that
67 % cleanup(something) is defined below!
68 varname = cleanup(varname(von(end):bis(end)));
69

70 % now assign the variable its value
71 %disp([varname,'= cs.Y(',num2str(i),').Data;']);
72 eval([varname, '= cs.Y(' ,num2str(i), ').Data;']);
73 end % for each variable in Y
74

75 eval(['clear ' ,structs{cs_i}, ';']); % clear curr. struct
76

40 APPENDIX B. SOURCE CODES & OTHER RESOURCES

77 end % looping through different structs in file
78

79 % clear all "temporary" variables so they don't get saved
80 clear varname i wers file_in von bis structs cs cs_i;
81

82 % save the rest ; −)
83 eval(['save ' ,file_out]);
84 disp(sprintf('All varibles saved to file ''%s''.' ,file_out));
85

86 %−−−

87 % cleans up & shorten messy names for use as variable names
88 function clean = cleanup(messy)
89 cleaner = strrep(strrep(messy, ',' , '_'), '\n' , '');
90 cleaner = strrep(strrep(cleaner, '[' , '_'), ']' , '');
91 cleaner = strrep(strrep(cleaner, ' ' , '_'), '/' , '__');
92 cleaner = strrep(cleaner, '"' , '');
93 cleaner = strrep(cleaner, ':' , '');
94 cleaner = strrep(cleaner, '=' , '');
95 cleaner = strrep(cleaner, ' −' , '');
96 cleaner = strrep(cleaner, 'Beschleunigungsaufschaltung' , ...
97 'Beschl_Auschf');
98 clean = strrep(cleaner, 'Verpannungsregelung' , 'Versp_Reg');

B.2. PARAMETER ESTIMATION 41

B.2 Parameter estimation

The following two programs were written for the parameter estimation. Their
usage is explained in the comment block at the top of para_ident .

Listing B.3: para_ident.m

1 % This function tries to estimate some parameters of the AHP
2 % model, using iotest.mdl and Simulink for the simulation −−

3 % and Matlab's fminsearch for the estimation part (in con −

4 % junction with some real measurements taken from the car).
5

6 % Usage:
7 % 1) Get some data from the car.
8 % 2) Use convert_data to create a file that can be loaded into
9 % the iotest.mdl. You may have to check that convert_data

10 % is looking for the correct signal names !
11 % 3) Copy the created file (ending on ..._hl for example) into
12 % the ./Data folder and select this file in the
13 % "From Measurements" block, do not close the simulink model .
14 % 4) Put the variable names you want to have estimated in the
15 % cell called "identpool" below (line 36).
16 % 5) Choose an appropriate error model in iotest.mdl.
17 % 6) Make sure, you're at the top level of the simulink model,
18 % then run this file.
19

20 % #) To stop the process you may just close the error −evolution
21 % window.
22 %
23 % You may observe how things are going by using the scopes
24 % at the top of the simulink model.
25

26 % Last change: Florian Knorn, 04/01/2006, 9:11
27 % florian@knorn.org
28

29 % startup − clean up workspace and reload variables.
30 clear all; clc; close all;
31 parameters; % model parameters
32 parameters_car_ctrl; % car controller parameters
33 iotest_init; % initialise iotest.mdl
34

35 % the following parameters will be estimated . . .
36 identpool = { 'F_c2' , 'F_m2' , 'd_v2' };
37

38 % initial condidtions of the system
39 x_0 = [0 0 p_z_0 p_s_0];
40

41 % time span of simulation / identification
42 tspan = [3 10];
43

44 % parameters to estimate
45 parastr = [];
46 for i = 1:length(identpool)
47 parastr = [parastr, ' ' ,identpool{i}];
48 end
49

50 % create initial parameter values and store them
51 eval(['param0 = [' ,parastr, '];']); param1 = param0;
52

53 % prepare plotting
54 ph = plot(0,nan); set(gca, 'YScale' , 'log');

42 APPENDIX B. SOURCE CODES & OTHER RESOURCES

55 xlabel('Iteration'); ylabel('Error measure');
56 title('Evolution of estimation error');
57 set(gcf, 'NumberTitle' , 'off' , ...
58 'Name' ,get(get(gca, 'title'), 'String'));
59

60 % store all variables into struct "p"
61 vars = whos;
62 for i=1:length(vars)
63 eval(['p.' ,vars(i).name, ' = ' ,vars(i).name, ';']);
64 end
65 clear vars;
66

67 % call the optimizer
68 finalpara = fminsearch(@para_ident_costf,param0,[],p) ;

Matlab’s fminsearch is run on the cost function para_ident_costf ,
which, itself, launches a simulation run of iotest.mdl and calculates the es-
timation error. The optimiser then tries to modify the parameters as to lower
the costs.

The costs here are chosen to be the integral (sum) over the squared devia-
tions between measured and simulated value of either xrel, pz, ps, or a combina-
tion of them, depending on the choice in the error model block, see Figure A.4
on page 36.

Listing B.4: para_ident_cost.m

1 function cost = para_ident_costf(est,p)
2 % Cost−Function. Used in conjunction with para_ident.m!
3

4 % Last change: Florian Knorn, 03/02/2005, 14:00
5 % florian@knorn.org
6

7 % get iteration number from plot ; −)
8 x = get(p.ph, 'XData');
9 fprintf('\n\n___ Step %i __________________' ,x(end)+1);

10

11 % assign variables and display their values
12 for i=1:length(p.identpool)
13 assignin('base' ,p.identpool{i},est(i));
14 eval(['fprintf(''\n' ,p.identpool{i}, ...
15 ' = %+e'',est(' ,num2str(i), '));']);
16 end
17

18 % run simulation
19 [t,notused,y] = sim('iotest' ,p.tspan);
20

21 % store parameters temporarily
22 p.param1 = est;
23

24 % calculate costs
25 cost = sum(y.^2);
26

27 % display of error evolution
28 set(p.ph, 'XData' ,[x,x(end)+1], ...
29 'YData' ,[get(p.ph, 'YData'),cost]);

B.3. COOKBOOK 43

B.3 Cookbook

The following PEGaSOS cookbook1 has been written for other people that will
get a chance to work with PEGaSOS and it’s AHP.

C O O K B O O K F O R P E G A S O S A N D A H P

by Florian Knorn

florian@knorn.org

2006 / 03 / 26

Contents:

1. Abbreviations

2. Windows network settings

3. Matlab / Simulink

4. Car

5. dSPACE ControlDesk

6. General Stuff

1 The name was suggested by Dr. van Tran.

44 APPENDIX B. SOURCE CODES & OTHER RESOURCES

1. Abbreviations (for your information)

AHP = Aktive Hydropneumatik

EPC = Existing PID Controller (Regler vom aktuellen Flash-Stand).

IDF = Intermediate Data File

PEGASOS = Prüfstand zur Entwicklung und Ganzheitlichen Simulation

Optimierter Fahrzeugsystemdynamik

PPC = PowerPC

RTI = Real-time interface

RTW = Real-time Workshop

2. Windows network settings (if necessary)

1. go to Start -> Einstellungen -> Netzwerkverbindungen

2. right-click on Local Area Connection, choose Eigenschaften

3. Double-click on Internet Protocol (TCP/IP)

4. Enter manual ip adresses:

IP-Adresse: 10.71.1.100, Subnetzmaske: 255.255.255.0

3. Matlab / Simulink

STARTUP:

1. cd C:\Pegasos\aktuell

2. add to path (folders and subfolders) C:\Pegasos\aktuell\dspace_ahp

3. cd C:\Pegasos\aktuell\dspace_ahp\ahp

[4. Make sure RTI1005 is the current board. If not, execute "rti1005"]

5. run pegasos_startup to load everything; you may edit this script

to suit your own needs, like have it load your need, additional

parameters and such.

EDITING & COMPILING:

6. change whatever you want to change

7. to compile: cd ..\rtw

8. push Ctrl+B (in simulink), or go to Tool -> Real-Time Workshop ->

-> Build Model [if you’re not connected to the car, ignore the

LOADING FAILED warning.]

B.3. COOKBOOK 45

4. Car

1. Turn on engine

2. Turn on PPC (key)

3. Turn on AHP (switch)

5. dSPACE ControlDesk

STARTUP:

1. load experiment Kraftregler.cdx

(from C:\Pegasos\aktuell\dspace_ahp\Experimente)

2. goto Platform -> Change connection

3. select Network Connection, using IP 10.71.1.3, and click ok

UPLOAD NEW SOFTWARE:

4. push alt + 1 and alt + 2

5. at the left, switch to Platform (dark greenish icon), at the

bottom switch to file selector

6. navigate to rtw folder (C:\Pegasos\aktuell\dspace_ahp\rtw)

7. drag and drop the Kraft_regler.sdf file to the ds1005 board and

confirm the upload

8. if upload and everythings else went well, you can switch to

animation mode (hit F5)

EDITING:

* edit things in EDIT MODE.

* play with things in either TEST MODE (offline mode),

* or online: RUN MODE

MEASUREMENTS:

* everything that is in a plotter (!) is recorded.

* check out the View -> Controlbars -> Instrument selector

1. paste a CaptureSettings Control block into your current Layout

2. click on Settings -> Acquisition

3. Select Stream To disk, and choose a file

46 APPENDIX B. SOURCE CODES & OTHER RESOURCES

4. dont store things in the Pegasos folder, but elsewhere. choose

sensible names. Ideally, use Adrian’s "Messprotokoll"-Tool.

5. when you click on Start, it’ll start capturing, until you push

Stop. Caution, everytime you push Start and don’t change the

filename, you will overwrite things.

6. the recorded data is in the .idf format, convert it to .mat

using ControlDesks converter from Tools -> Convert IDF-File

7. use Daniel’s GAI to inspect the mat-file, use Florian’s

convert_data to convert it for use with iotest.mdl. Add the GAI

folder to Matlab’s path (for convenience), then just simply

run "gai".

6. General Stuff

PROBLEMS (most likely "Lost connection bla bla bla"):

1. Close control desk

2. Turn off AHP (switch)

3. wait a couple of seconds

4. Relaunch the DSP service (use shortcut on desktop, or run

services.msc, and hit "neu starten" on "DSP Net Service")

5. turn AHP (swtich) back on

6. elaunch ControlDesk.

If this doesnt work, repeat procedure, but also turning off the PPC

(key). Note that the PPC will keep running about 45 sec after key

has been turned, so make sure you wait that time and watch the

corresponding LED go out. If problems persist, turn off EVERYTHING

(including laptop), and restart ;-)

TURNING THINGS OFF:

1. Shut down ControlDesk

2. turn off engine

3. Wait until car sinks down fully

4. Turn of AHP (switch)

5. Turn the PPC off (key)

A P P E N D I X C

Additional plots

We shall close this report with a number of additional plots, similar to those
already shown earlier.

C.1 Validation

The following plots are analogue to Figure 2.3 but use the other three friction
models. See Subsection 2.4.3 on page 16 for more details.

I
[m

A
]

p
z

[b
ar

]
x

re
l
[m

m
]

Time t [s] GGGGGGA

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

-10

0

10

30

35

40

-100

0

100

Figure C.1: Comparison of simulated values (−−−−−−) with measurements taken
in the car (−−−−−−) for the input current shown in the first plot, using
friction model (i).

47

48 APPENDIX C. ADDITIONAL PLOTS

I
[m

A
]

p
z

[b
ar

]
x

re
l
[m

m
]

Time t [s] GGGGGGA

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

-10

0

10

30

35

40

-100

0

100

Figure C.2: Comparison of simulated values (−−−−−−) with measurements taken
in the car (−−−−−−) for the input current shown in the first plot, using
friction model (ii).

I
[m

A
]

p
z

[b
ar

]
x

re
l
[m

m
]

Time t [s] GGGGGGA

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

-10

0

10

30

35

40

-100

0

100

Figure C.3: Comparison of simulated values (−−−−−−) with measurements taken
in the car (−−−−−−) for the input current shown in the first plot, using
friction model (iii).

C.2. CONTROLLER TESTING 49

C.2 Controller testing

The remaining figures show further “challenges” for the different controllers,
that is various intentional parameter changes for further testing of their ro-
bustness (in each case, the perturbation is mentioned in the caption of the
figure).

Generally, the controllers do well, and there is not a single major problem
occurring. This underlines their rather consistent and robust nature, and un-
derlines again the need for real live testing, as the controllers seem to have
passed the “qualification round”.

In further tuning, one may try to reduce the overshooting and oscillatory
tendencies (the effect of these should also to be evaluated in the car).

p
z

[b
ar

]
G
G
G
G
G
G
A

EPC SM2

p
z

[b
ar

]
G
G
G
G
G
G
A

Time t [s] GGGGGGA

SM3

Time t [s] GGGGGGA

AD

0 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 8

33

34

35

36

37

33

34

35

36

37

33

34

35

36

37

33

34

35

36

37

Figure C.4: Comparison of the performance of the controller, where pz,d

(−−−−−−) and pz (−−−−−−). Plant disturbance: −50 mA offset in I.

50 APPENDIX C. ADDITIONAL PLOTS

p
z

[b
ar

]
G
G
G
G
G
G
A

EPC SM2

p
z

[b
ar

]
G
G
G
G
G
G
A

Time t [s] GGGGGGA

SM3

Time t [s] GGGGGGA

AD

0 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 8

33

34

35

36

37

33

34

35

36

37

33

34

35

36

37

33

34

35

36

37

Figure C.5: Comparison of the performance of the controller, where pz,d

(−−−−−−) and pz (−−−−−−). Plant disturbance: kv changed by −20%.

p
z

[b
ar

]
G
G
G
G
G
G
A

EPC SM2

p
z

[b
ar

]
G
G
G
G
G
G
A

Time t [s] GGGGGGA

SM3

Time t [s] GGGGGGA

AD

0 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 8

33

34

35

36

37

33

34

35

36

37

33

34

35

36

37

33

34

35

36

37

Figure C.6: Comparison of the performance of the controller, where pz,d

(−−−−−−) and pz (−−−−−−). Plant disturbance: a2 changed by +20%.

C.2. CONTROLLER TESTING 51
p
z

[b
ar

]
G
G
G
G
G
G
A

EPC SM2

p
z

[b
ar

]
G
G
G
G
G
G
A

Time t [s] GGGGGGA

SM3

Time t [s] GGGGGGA

AD

0 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 8

33

34

35

36

37

33

34

35

36

37

33

34

35

36

37

33

34

35

36

37

Figure C.7: Comparison of the performance of the controller, where pz,d

(−−−−−−) and pz (−−−−−−). Plant disturbance: a3 changed by +20%.

p
z

[b
ar

]
G
G
G
G
G
G
A

EPC SM2

p
z

[b
ar

]
G
G
G
G
G
G
A

Time t [s] GGGGGGA

SM3

Time t [s] GGGGGGA

AD

0 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 8

33

34

35

36

37

33

34

35

36

37

33

34

35

36

37

33

34

35

36

37

Figure C.8: Comparison of the performance of the controller, where pz,d

(−−−−−−) and pz (−−−−−−). Plant disturbance: κ̄ changed by −20%.

Bibliography

[1] Bernd Acker, Wolfgang Darenberg, and Heinz Gall. Active suspension for
passenger cars. In IAVSD ’89: Proceedings of the 11th Symposium of the In-
ternational Association for Vehicle System Dynamics, pages 15–25, August
1989.

[2] Frank Frühauf and Rüdiger Rutz. Innovisia — an active suspension for a
coach. Automatisierungstechnik, 46:120–127, March 1998.

http://www.oldenbourg.de/cgi-bin/roabstracts?A=659

[3] Hassan K. Khalil. Nonlinear Systems. Macmillan Publishing Company,
New York, NY, USA, 1992.

[4] Miroslav Krstić, Ioannis Kanellakopoulos, and Petar V. Koktović. Nonlin-
ear and Adaptive Control Design. John Wiley & Sons, Inc., New York, NY,
USA, 1995.

[5] Henrik Olsson, Karl J. Åström, Carlos Canudas de Wit, Magnus Gäfvert,
and Pablo A. Lischinsky-Arenas. Friction models and friction compensa-
tion. European Journal of Control, 4:176–195, December 1998.

http://www.control.lth.se/~kja/friction.pdf

[6] Michael Pyper, Wilhelm Schiffer, and Walter Schneider. ABC — Active
Body Control. verlag moderne industrie / AG, Landsberg,
Germany, 2003.

[7] Magnus Rau. Modellierung, Simulation und Auslegung eines hydropneu-
matischen Federbeins mit schnell verstellbarer Dämpfung. Diplomarbeit,
2001.

[8] Jean-Jacques E. Slotine and Weiping Li. Applied Nonlinear Control.
Prentice–Hall International, Inc., London, UK, 1991.

[9] Heribert Stroppe, Heinz Langer, and Peter Streitenberger. Physik für Stu-
denten der Natur– und Ingenieurwissenschaften. Hanser Fachbuchverlag,
Leipzig, Germany, 1999.

53

http://www.oldenbourg.de/cgi-bin/roabstracts?A=659
http://www.control.lth.se/~kja/friction.pdf

	Title Page
	Table of contents
	Acknowledgments
	Introduction
	1 The existing system
	1.1 Introduction
	1.2 Set–up of the system
	1.3 Outer control loops
	1.4 Inner loop

	2 The model
	2.1 Introduction
	2.2 modelling of the components
	2.3 modelling of the system as a whole
	2.4 Parameters and Validation

	3 Controller design
	3.1 Introduction
	3.2 Input–output linearising controller
	3.3 Sliding mode control
	3.4 Adaptive control

	4 Simulations
	4.1 Introduction
	4.2 Set--up of the tests
	4.3 Nominal conditions
	4.4 Parameter perturbations

	Conclusion
	A Simulink models
	A.1 Simulation
	A.2 Car software
	A.3 Estimation and Validation

	B Source codes & other resources
	B.1 Data treatment
	B.2 Parameter estimation
	B.3 Cookbook

	C Additional plots
	C.1 Validation
	C.2 Controller testing

	Bibliography

