
1. Motivation

• Protein-Protein-Interactions (PPI) describe
key biological processes

• New measurement techniques
➠  unprecedented amounts of data

• Data representation by graphs (networks):
‣ Nodes:	Proteins
‣ Edges:	Interactions between proteins

Key question: “Which proteins are important / essential?”

➠ Use ranking algorithms and centrality measures to identify important nodes.

Problem: Real data usually noisy / inaccurate / incomplete !

In this poster, based on the work in [2], we evaluate

• the ability of different ranking algorithms to identify essential proteins

• the impact of inaccurate data on these algorithms using
‣ simulated networks (Barabási-Albert random graphs)
‣ real data (PPI network of Saccharomyces Cerevisiae, data set by Uetz et al.)

2. Scale-free random graphs

• Seminal graph model by A.-L. Barabási and R. Albert, [3], that is based on growth

• Generated by an iterative process:
‣ Start with small, connected graph
‣ At each step: add in one node and m edges using preferential attachement

• Characteristics:
‣ Many nodes with few connections, but a few highly connected “hubs”
‣ Scale free: No characteristic node degree (exponential degree distribution)
‣ Ultra small world: very short average path lengths

• Used to model many real world networks: WWW, phone networks, PPIN, … [4]

3. Ranking schemes and essentiality

Idea: identify the “important” nodes by establishing some form of node ranking, for 
instance by attributing some sort of “score” to each node and then sorting by it.

➠ Notion of “importance” depends on the interpretation and also the application

× Node degrees (ND) ◊ Status (ST) ✳ Damage (DA)
⃥ PageRank (PR) △ Excentricity (EX)
○ HITS (HI) ● Centroid value (CV)

Question: Taking the top 1%, 5%, 10% and 25% of proteins from the top of the 
rankings, what is the fraction of actually essential proteins in that set (using truth data)?

Tab. 1: Comparison of the algorithm’s abilities to identify essential nodes in the Uetz et al. data set when 
considering the top 1%, 5%, 10% or 25% of the rankings as “essential”. Bold: best value in row; can-
celed: value even below overall fraction of essential proteins

Scheme
Top % ND HI PR EX ST CV DA

1 % 83.3 50.0 83.3 39.1 33.3 33.3 66.7

5 % 48.4 35.7 46.4 24.6 17.2 17.2 44.0

10 % 34.4 28.6 39.3 24.6 26.8 26.8 33.9

25 % 31.5 27.2 32.6 24.8 26.8 26.8 30.6

4. Network perturbations

Among others, we evaluated these types of perturbations on the network:

•  Edge removal • Edge addition
•  Edge rewiring • Node removal

5. Deviation measures

Several notions of deviation have been explored. Here, we will display the following:

①  How important really are highly ranked from the perturbed network
②  The chance of seemingly important nodes to be, in fact, not important
③  The chance of important nodes not to be identified as such

• The first measure is calculated using the actual ranks of the top 5% of nodes

• The other two only compare intersections of the sets of the top 5% of nodes 
from both rankings (that is of the perturbed and unperturbed graphs)

[1] Peter Uetz and Loic Giot. A comprehensive analysis of protein–protein interactions in saccharomyces cerevisiae. Nature, 403:623–627, February 2000.

[2] Florian Knorn. Ranking and importance in complex networks. Studienarbeit, October 2005.

6. Results from simulated graphs

• Results from 250 repetitions, using 
scale-free random graphs with 
3000 nodes and ≈9000 edges 

• Odd behaviours of EX (△) result 
from disconnection of the graphs

• ST (◊) and CV (●) are almost al-
ways identical (this is no surprise, 
it follows from their definition)

• PR (⃥) and ND (×) seem to be 
generally most robust

• However: in Fig. 4 (b) HITS and 
the centrality based measures 
perform clearly better

7. Results from real data

• Used the largest connected component of the Uetz et al. data set. It contains 558 
proteins and 646 interactions; 22.6% of proteins are known to be essential

• Introduced increasing amounts of perturbation; results are averages from 50 runs

• Took top 5% off each ranking and calculated fraction of essential proteins

Tab. 2: Perturbation: Edge removal. Comparison of the fraction of correctly identified proteins with in-
creasing amounts of perturbation.

Scheme
Perturb. % ND HI PR EX ST CV DA

0 % 48.4 35.7 46.4 24.6 17.2 17.2 44.0

5 % 48.6 35.2 44.6 20.6 19.1 19.1 41.4

10 % 45.3 35.9 44.6 18.8 18.9 18.9 42.1

15 % 46.3 36.8 44.4 19.1 19.1 19.1 41.4

20 % 47.1 37.2 45.2 16.8 16.8 16.8 40.6

Tab. 3: Perturbation: Edge rewiring.

Scheme
Perturb. % ND HI PR EX ST CV DA

0 % 48.4 35.7 46.4 24.6 17.2 17.2 44.0

5 % 48.3 37.2 45.6 26.3 23.2 23.2 37.0

10 % 47.9 38.9 46.7 22.7 21.7 21.7 37.0

15 % 47.1 40.1 46.6 20.4 20.4 20.4 37.2

20 % 46.3 39.7 47.0 19.6 19.4 19.4 36.2

Tab. 4: Perturbation: Edge addition.

Scheme
Perturb. % ND HI PR EX ST CV DA

0 % 48.4 35.7 46.4 24.6 17.2 17.2 44.0

5 % 47.6 37.1 45.4 23.6 19.7 19.7 37.6

10 % 46.5 38.9 45.2 29.8 26.1 26.1 35.7

15 % 46.1 40.2 45.1 27.9 28.3 28.3 35.0

20 % 45.7 41.9 46.4 27.4 29.7 29.7 34.5

• ND most successful, consistent and fairly robust in detecting essential proteins

• PR second best for detection of essentiality, but most robust

• HITS second most robust; centrality based measures rather sensible and only 
give low detection rates, often performing worse than would purely random picks!

8. Future directions

• Evaluate more structured perturbations, or combinations of perturbations

• Find more theoretical results on the robustness of the different algorithms

• Investigate damage on larger data sets, as it showed some promising results

More extensive results and analysis on other data sets can be found in [2].

[3] Albert-László Barabási and Réka Z. Albert. Emergence of scaling in random networks. Science, 286(5439):509–512, October 1999.

[4] Réka Z. Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1):47–96, January 2002.
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Fig. 1: PPI Network of S. Cere-
visiae. Data set by Uetz et al., [1]

4.4. QUANTITATIVE ASSESSMENT 69

Number of removed edges GGGGGGA

D
ev

ia
ti

on
GG
G
G
G
GA

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6 ×103

(a) Edge removal

Number of added edges GGGGGGA

D
ev

ia
ti

on
GG
G
G
G
GA

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

3

3.5

4 ×103

(b) Edge addition
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(c) Edge rewiring
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(d) Node removal

Figure 4.4: Sensitivity for deviation measure 2.

Edge rewiring HITS, being the most sensitive ranking method here, as well
as status and centroid value are clearly outperformed by PageRank and node
degrees, as we can see in Figure 4.4(c).

The apparent good performance of excentricity should not be given too
much weight in light of its poor resolution, and also that it is effectively useless
once the graph becomes disconnected.

Node removal The interesting thing in Figure 4.4(d) is that excentricity does
quite a competitive job. In fact, on this plot there is no clear winner (even
though PageRank and node degrees perform slightly better than the other
measures).

Method 3

General remarks The four plots for this measure are shown in Figure 4.5 on
the following page. Out of all the plots, this one shows probably the strangest
behaviors.

In plots (a) and (b) the curves for node degree induced ranking show some
oscillatory behaviour. To properly explain this further investigations should be
carried out.

Fig. 2: Scale-free graph, deviation measure ①
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Figure 4.5(b) that independent of the amount of perturbation, they clearly
beat PageRank, excentricity and node degrees (which show an oscillatory be-
haviour).

Edge rewiring In Figure 4.5(c) we get roughly the same picture as for edge
removal, however, the drop after the first peaking for excentricity is less pro-
nounced.

PageRank, again, performs well, but the node degree induced ranking seems
to overtake it at roughly 1000 rewired edges.

Node removal The plots for node removal, shown in Figure 4.5(d), indicate
that here again HITS, centroid value and status preform best, followed by
PageRank. Excentricity is out of competition as it seems to be much more
sensitive than the other measures.

Method 4
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(c) Edge rewiring
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Figure 4.6: Sensitivity for deviation measure 4.

General remarks We shall now move on to a radically different measuring
scheme. Figure 4.6 shows some of the results from our simulations for deviation
measure 4.

Fig. 3: Scale-free graph, deviation measure ②

Fig. 4: Scale-free graph, deviation measure ③
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Figure 4.7: Sensitivity for deviation measure 5.

Edge rewiring The same comments as for edge removal can be made for
Figure 4.7(c).

Node removal Clearly, Figure 4.7(d) is very similar to Figure 4.6(d), so we
find also for measure 5 that node degrees and PageRank allow for the least
sensitive ranking in case of node removal.

Method 6

General remarks It is not hard to see that excentricity does a very bad job
in all four cases of Figure 4.8 on the next page. The other measures perform
much better, if not ideally well: They appear to be completely robust with
respect to edge additions for instance as deviations there are actually zero.

PageRank seems one more time to be the overall winner, followed by node
degrees.

Edge removal Besides the strong deviation for excentricity in Figure 4.8(a)
(which can be explained by the disconnection issue again), HITS, centroid value


