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e Data representation by graphs (networks): (a) Bge removed (v) Bdge addition
» Nodes: Proteins Fig. 1: PPl Network of S. Cere-
» Edges: Interactions between proteins visiae. Data set by Uetz et al., [1] ol - | et
Key question: “\Which proteins are important / essential?” N
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w Jse ranking algorithms and centrality measures to identify important nodes.

Problem: Real data usually noisy / inaccurate / incomplete !

In this

poster, based on the work in [2], we evaluate

o the ability of different ranking algorithms to identify essential proteins

e the impact of inaccurate data on these algorithms using

4
4

simulated networks (Barabasi-Albert random graphs)
real data (PPl network of Saccharomyces Cerevisiae, data set by Uetz et al.)

2. Scale-free random graphs

e Seminal graph model by A.-L. Barabasi and R. Albert, [3], that is based on growth
e (Generated by an iterative process:
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Start with small, connected graph
At each step: add in one node and m edges using preferential attachement

e (Characteristics:
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Fig. 2: Scale-free graph, deviation measure (D
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Fig. 4: Scale-free graph, deviation measure 3

7. Results from real data
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(c) Edge rewiring
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Fig. 3: Scale-free graph, deviation measure @

Results from 250 repetitions, using
random graphs with
3000 nodes and ~9000 edges

scale-free

Odd behaviours of EX (A

) result

from disconnection of the graphs

ST (©¥) and CV (¢) are almost al-

ways identical (this is no surprise,
it follows from their definition)

PR (

) and ND (x) seem to be

generally most robust

However: in Fig. 4 (b) HITS and
the centrality based measures
perform clearly better

» Many nodes with few connections, but a few highly connected “hubs”
» Scale free: No characteristic node degree (exponential degree distribution) e Used the largest connected component of the Uetz et al. data set. It contains 558
» Ultra small world: very short average path lengths proteins and 646 interactions; 22.6% of proteins are known to be essential
* Used to model many real world networks: WWW, phone networks, PPIN, ... [4] e Introduced increasing amounts of perturbation; results are averages from 50 runs
e TJook top 5% off each ranking and calculated fraction of essential proteins
3. Ranking schemes and essentiality
Dot S ND HI PR EX ST CV DA
Idea: identify the “important” nodes by establishing some form of node ranking, for 0 % 48.4 35.7 46.4 24.6 44.0
instance by attributing some sort of “score” to each node and then sorting by it. ° % 48.6 35.2 44.6 41.4
w Notion of “importance” depends on the interpretation and also the application 10 % 4.3 599 440 42
15 % 46.3 36.8 44.4 41.4
x Node degrees (ND) & Status (ST) Damage (DA) 20 % 47.1 37.2 45.2 40.6

PageRank (PR) A Excentricity (EX) Tab. 2: Perturbation: Edge removal. Comparison of the fraction of correctly identified proteins with in-
O HITS (HI) Centroid value (C\/) creasing amounts of perturbation.
Question: Taking the top 1%, 5%, 10% and 25% of proteins from the top of the Sy ND HI PR EX ST Cv DA
rankings, what is the fraction of actually essential proteins in that set (using truth data)? 0 % 48.4 35.7 46.4 24.6 44.0
5% 48.3 37.2 45.6 26.3 23.2 23.2 37.0
N_ ND HI PR EX ST cV DA 10 % 47.9 38.9 46.7 207 37.0
1% 83.3 50.0 83.3 39.1 33.3 33.3 66.7 15 % 47.1 40.1 46.6 37.2
5% 48.4 35.7 46.4 24.6 44.0 20 % 46.3 39.7 47.0 36.2
10 % 34.4 28.6 39.3 24.6 26.8 26.8 33.9 Tab. 3: Perturbation: Edge rewiring.
25 % 31.5 27.2 32.6 24.8 26.8 26.8 30.6
Tab. 1: Comparison of the algorithm’s abilities to identify essential nodes in the Uetz et al. data set when > Scheme ND HI PR EX ST cV DA
considering the top 1%, 5%, 10% or 25% of the rankings as “essential”. Bold: best value in row;
: value even below overall fraction of essential proteins 0 % 48.4 35.7 46.4 24.6 44.0
5 % 47.6 37.1 45.4 23.6 37.6
10 % 46.5 38.9 45.2 29.8 26.1 26.1 35.7
4. Network perturbations 15 % 46.1 40.2 45.1 27.9 28.3 28.3 35.0
20 % 45.7 41.9 46.4 27.4 29.7 29.7 34.5

Among others, we evaluated these types of perturbations on the network:

e Edge removal
e Edge rewiring

e FEdge addition
e Node removal

5. Deviation measures

Several notions of deviation have been explored. Here, we will display the following:

Tab. 4: Perturbation: Edge addition.

ND most successful, consistent and fairly robust in detecting essential proteins

PR second best for detection of essentiality, but most robust

HITS second most robust; centrality based measures rather sensible and only
give low detection rates, often performing worse than would purely random picks!

8. Future directions

(D How important really are highly ranked from the perturbed network

(@ The chance of seemingly important nodes to be, in fact, not important .

@ The chance of important nodes not to be identified as such .
o

e The first measure is calculated using the actual ranks of the top 5% of nodes

e The other two only compare intersections of the sets of the top 5% of nodes
from both rankings (that is of the perturbed and unperturbed graphs)
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Evaluate more structured perturbations, or combinations of perturbations

Find more theoretical results on the robustness of the different algorithms

Investigate damage on larger data sets, as it showed some promising results

More extensive results and analysis on other data sets can be found in [2].

[3] Albert-Laszl6 Barabasi and Réka Z. Albert. Emergence of scaling in random networks. Science, 286(5439):509-512, October 1999.
[4] Réka Z. Albert and Albert-Laszlé Barabasi. Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1):47-96, January 2002.



