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Introduction

Rough structure of this talk:

• Graph theory without tears

◦ Basic notions

◦ Random graphs

◦ Ranking schemes

• Robustness of the ranking schemes

◦ Perturbations

◦ Deviation measures

◦ Results

• Application to real data

◦ Datasets

◦ Identifying essentiality

◦ Results
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Introduction

• Idea by Euler, ∼ 1730

...

• Some of the applications today: modeling of

◦ Internet, WWW, Intranets

◦ Social networks, epidemics

◦ Infrastructures (roads, power grids)

◦ Phone call networks

◦ Collaboration networks

◦ Protein–protein interaction networks
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Basic notions

• What is a graph?

◦ Loosely speaking: A graph is a bunch of

nodes connected by a bunch of edges

◦ More formally: G = (V, E) . . .

◦ Description via matrices: adjacency–, distance–,

Laplacian– & incidence–matrix

• Characteristics

◦ Undirected / directed

◦ Connected / disconnected

◦ Characteristic values: number of nodes / edges,

average node degree, degree distribution,

average path length, diameter, clustering coefficient, . . .
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Random graphs

We looked at 3 models:

• Erdös–Rényi (classical), ∼ 1957

◦ Seminal, first model

◦ No “order”

◦ Few practical applications

• Watts–Strogatz (small–world) ∼ 1999

◦ Model for social networks

◦ Highly clustered, rel. short paths

◦ Used in sociology, biology, . . .

• Barabási–Albert (scale–free) ∼ 1999

◦ Model for networks with growth

◦ Very short paths, few hub nodes

◦ Many practical applications
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Ranking schemes

• Growing complexity of networks — Who’s important?

⇒ Ranking of the nodes

• Most immediate

◦ Node degrees (ND)

• Eigenvector based

◦ HITS

◦ PageRank (PR)

• Centrality based

◦ Excentricity (EXC)

◦ Status (STA)

◦ Centroid value (CV)

• Impact on topology based

◦ Damage (DAM)
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Introduction

• What impact have perturbations on rankings?

• Real data in many cases noisy / missing:

◦ Inaccurate measuring

◦ Deliberate sampling

• 6 deviation measures:

◦ 3 based on node ranks

◦ 3 based on top percentile of nodes

Place Node

1. C

2. A

3. B

• Types of perturbation:

◦ Edge removal / rewiring / addition

◦ Node removal

• Simulations:

1. Generate & rank BA graph

3. Rank perturbed graph

2. Perturb graph

4. Compare rankings
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Deviation measures

• Based on node ranks:

Original Perturbed

Rank Node Rank Node

1. C

2. H

3. D

4. J

5. A

· ·

· ·

· ·

· ·

· ·

• Based on top fraction of nodes:
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• Based on node ranks:

δ1 = |1− 6|
︸ ︷︷ ︸

Node C

+ |2− 2|
︸ ︷︷ ︸

Node H

+ |3− 9|
︸ ︷︷ ︸

Node D

+ |4− 4|
︸ ︷︷ ︸

Node J

+ |5− 1|
︸ ︷︷ ︸

Node A

= 15
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Number of removed edges GGGGGGGA

D
e
v
ia

ti
o
n
δ
1

G
G
G
G
G
G
G
A

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

×× DAM

△ EXC

� HITS

♦ STA

• CV

× ND

� PR

Average value of 250 Barabási–Albert graphs on 150 nodes and

450 edges



Introduction

Graph theory

Robustness
· Introduction
·Dev. measures
·Results

Real data

Conclusion

Florian Knorn — Studienarbeit Ranking and importance in complex networks — 12 / 20

Results

Number of added edges GGGGGGGA

D
e
v
ia

ti
o
n
δ
4

G
G
G
G
G
G
G
A

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

×× DAM

△ EXC

� HITS

♦ STA

• CV

× ND

� PR

Average value of 250 Barabási–Albert graphs on 3000 nodes and

9000 edges



Introduction

Graph theory

Robustness
· Introduction
·Dev. measures
·Results

Real data

Conclusion

Florian Knorn — Studienarbeit Ranking and importance in complex networks — 12 / 20

Results

• PR and ND often most robust

• However, few cases where HITS, CV or STA better

• EXC sensitive + useless when graph disconnected

• DAM relatively robust, but costly

• Choice always depends on:

◦ Interpretation of “deviation”

◦ Type of perturbations

◦ Resolution of the ranking needed

◦ Interpretation of “importance” ⇒ application
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Introduction

• Nodes’ ranked importance
?

! real importance ?

• Protein–Protein interaction networks

◦ Undirected graphs

◦ Isolate largest connected component

◦ Top–ranked–nodes
?

! Essential–for–survival

• Measure of success:
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Datasets

Protein–protein interaction network of the budding yeast

Saccharomyces cerevisiae.

• Uetz et al. 1)

◦ n = 558, e = 646

◦ hess = 22.6%

• Ito et al. 2)

◦ n = 2840, e = 4147

◦ hess = 17.9%

• Yu et al. 3)

◦ n = 4544, e = 22587

◦ hess = 21.0%

1) Nature, 403:623–627, Feb. 2000
2) Proc. of the Nat. Academy of Sciences of the USA, 98:4569–4574, April 2001
3) Trends in Genetics, 20(6):227–231, June 2004
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Identifying essentiality

• We considered the top ranked 5% of nodes as “important”

• PR & ND most adept

• STA & CV mixed results

• Further investigations needed for DAM

Rank. sch. Uetz Ito Yu

ND 48.4 23.8 42.3

HITS 35.7 16.6 43.8

PR 46.4 24.8 62.1

EXC 24.6 18.4 34.7

STA 17.2 19.7 59.5

CV 17.2 19.7 59.5

DAM 44.0 ? ?

hess 22.6 17.9 21.0
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Robustness

• Data surely inaccurate to some extent

• Study the effect of increasing (edge) perturbations

• PR and ND still best results

• But HITS most robust ( = least relative change )

Rank. sch. Uetz Ito Yu

ND 46.3 23.0 43.3

HITS 39.7 17.0 44.5

PR 47.0 23.8 64.1

EXC 19.6 18.2 29.2

STA 19.4 20.3 57.1

CV 19.4 20.3 57.1

DAM 36.2 ? ?

hess 22.6 17.9 21.0
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Conclusion

• Developed large collection of Matlab functions for

graph theory, random graphs & ranking schemes

• Robustness of the ranking schemes

◦ PR and ND usually most robust

◦ EXC least suitable

• Application to real data:

◦ PR and ND again usually most suitable

◦ HITS most robust

• ND apparently very good approx. to more costly PR

• Recommended further investigations:

◦ Other ranking schemes, more investig. for damage

◦ Use different deviation measures

◦ More structured perturbations

◦ Other datasets, directed graphs
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