
This is a preprint version of a Brief Paper published in
Volume 45, Issue 8 (August 2009, pages 1943–1947) of

Automatica

A Journal of IFAC, the International Federation of Automatic Control
c© 2009 Elsevier Ltd. All rights reserved.

Automatica is available online at:
http://www.sciencedirect.com/science/journal/00051098.

The DOI of this article is: 10.1016/j.automatica.2009.04.013

Article published in Automatica 45 (2011) 1943–1947

http://www.sciencedirect.com/science/journal/00051098
http://dx.doi.org/10.1016/j.automatica.2009.04.013


Pr
ep

rin
tOn linear co-positive Lyapunov functions

for sets of linear positive systems ⋆

Florian Knorn, Oliver Mason, Robert Shorten

Hamilton Institute, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland

Abstract

In this paper we derive necessary and sufficient conditions for the existence of a common linear co-positive Lyapunov function
for a finite set of linear positive systems. Both the state dependent and arbitrary switching cases are considered. Our results
reveal an interesting characterisation of “linear” stability for the arbitrary switching case; namely, the existence of such a
linear Lyapunov function can be related to the requirement that a number of extreme systems are Metzler and Hurwitz stable.
Examples are given to illustrate the implications of our results.
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1 Introduction

Dynamic systems in which the state is constrained to be
positive as trajectories evolve, have been the subject of
many recent studies in the control engineering and math-
ematics literature [4,2,23,15]. The interest in such sys-
tems is hardly surprising since they are ubiquitous and
can be found in diverse areas such as economics [14,18],
biology [12,6,1], communication networks [20,5,25], and
in decentralised control [24] or synchronisation / consen-
sus problems [13]. While both nonlinear and linear pos-
itive systems have been studied, much recent attention
has focused on both time-varying and time-invariant lin-
ear positive systems, and on the Metzler matrices that
characterise the properties of such systems. Our focus in
this paper is on this latter class of systems, and in par-
ticular on the existence of linear co-positive Lyapunov
functions (LCLF). It is well known that the existence of
an LCLF is both necessary and sufficient for the stability
of a positive linear time-invariant (LTI) system, [2,4,11].
While studying the existence of such Lyapunov functions
for switched systems is certainly conservative, given the
previous comment (re. LTI systems) establishing condi-
tions under which such functions exist is a natural place
to begin the study of the stability of switched linear pos-
itive systems. In fact, many of the interesting properties
of positive systems can be attributed to the existence of
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an LCLF. Of particular interest is the recent paper by
Haddad et al., [8], in which the existence of such a func-
tion was related to delay independent stability proper-
ties that are possessed by many positive systems. In-
spired by this and related work, and by our interest in
switched systems, we intend in this brief paper to deter-
mine tractable conditions for the existence of a common
LCLF for a finite number of LTI systems that are asso-
ciated with polyhedral regions in the positive orthant,
which can be interpreted as state dependent switching.
As we shall see, compact and easily verifiable conditions
can be obtained for the existence of such a function, and
these results complement and complete initial results re-
ported in [17].

Our brief paper is structured as follows. In Section 2
we will present conditions for the existence of a com-
mon LCLF for switched positive systems whose con-
stituent systems are associated with cones that parti-
tion the state space; Section 3 then focuses on arbitrarily
switching systems (i. e. any constituent system can be
switched to anywhere in the positive orthant). Finally,
in Section 4 we discuss the significance of our results and
give examples of applications that motivate their use.

Notation and mathematical preliminaries

Throughout, R denotes the field of real numbers, Rn is
the n-dimensional Euclidean space and Rn×n the space
of n×n matrices with real entries. A subset C of Rn is a
closed, pointed convex cone if and only if αx+ βy ∈ C
for any x,y ∈ C and non-negative scalars α, β.
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if all their entries are positive (non-negative); this is writ-
ten as A ≻ 0 resp. A � 0, where 0 is the zero-matrix of
appropriate dimension. The ith column of A is denoted
A(i). A matrix A is said to be Hurwitz if all its eigen-
values lie in the open left half of the complex plane. A
matrix is said to be Metzler if all its off-diagonal entries
are non-negative.

We use ΣA to denote the LTI system ẋ = Ax. Such a
system is called positive if, for a positive initial condi-
tion, all its states remain in the positive orthant through-
out time. A classic result shows that this will be the
case if and only if A is a Metzler matrix, [4]. Similarly,
a switched positive linear system is a dynamical sys-
tem of the form ẋ = As(x,t)x for x(0) = x0 where
s : Rn ×R→ {1, . . . , N} is the so-called switching sig-
nal and {A1, . . . ,AN} are the system matrices of the
constituent systems , which are Metzler matrices. See
[21,7] for more details on systems of this type.

Finally, the function V (x) = vTx is said to be a linear
co-positive Lyapunov function (LCLF) for the positive
LTI system ΣA if and only if V (x) > 0 and V̇ (x) < 0
for all x ≻ 0, or, equivalently, v ≻ 0 and vTA ≺ 0.

2 State dependent switching of positive systems

We first consider the existence of a common LCLF for
sets of positive LTI systems, each of which is associated
with a closed convex region of the positive orthant. Such
problems arise in the study of state dependent switch-
ing problems, see for example [21]. To be more precise,
assume that there exist N closed pointed convex cones
Cj, such that the state space, Rn

+, the closed positive or-
thant of Rn, can be written as Rn

+ = ∪N
j=1Cj . Moreover,

assume that we are given stable positive LTI systems
ΣAj

for j = 1, . . . , N such that the jth system can only
be active for states within Cj .

Our first main result gives a necessary and sufficient
condition for the existence of a common LCLF for this
type of positive system. Formally, we provide a condition
for the existence of a vector v ≻ 0 such that vTAjxj < 0
for all non-zero xj ∈ Cj for j = 1, . . . , N .

Theorem 1 Given N Metzler and Hurwitz matrices
A1, . . . ,AN ∈ Rn×n and N closed, convex pointed cones
C1, . . . , CN such that Rn

+ = ∪N
j=1Cj, precisely one of the

following statements is true:

(i) There is a positive vector v ∈ R
n such that

vTAjxj < 0 for all non-zero xj ∈ Cj and
j = 1, . . . , N .

(ii) There are vectors xj ∈ Cj, with j = 1, . . . , N , not
all zero such that

∑N

j=1 Ajxj � 0.

PROOF. (ii) ⇒¬(i): 1 Assume that (ii) holds. Then,
for any v ≻ 0 we have vTA1x1 + . . . + vTANxN ≥ 0
which implies that (i) cannot hold.

¬(ii) ⇒ (i): Assume that (ii) does not hold, i. e.
there are no vectors xj ∈ Cj not all zero such that
∑N

j=1 Ajxj � 0. This means that the following inter-
section of convex cones is empty:

{
∑N

j=1 Ajxj : xj ∈ Cj, not all zero
}

︸ ︷︷ ︸

O1

∩
{

x � 0

}

︸ ︷︷ ︸

O2

= ∅.

By scaling appropriately we can see that this is equiva-
lent to:

{
∑N

j=1 Ajxj : xj∈Cj ,
∑N

j=1 ‖xj‖1=1
}

︸ ︷︷ ︸

Ō1

∩
{

x � 0

}

︸ ︷︷ ︸

O2

= ∅

(1)
where ‖ · ‖1 denotes the usual spatial 1-norm. Now, Ō1

and O2 are disjoint non-empty closed convex sets and
additionally Ō1 is bounded. Thus, we can apply Corol-
lary 4.1.3 from [9] which guarantees the existence of a
vector v ∈ Rn such that

max
y∈Ō1

vTy < inf
y∈O2

vTy (2)

As the zero vector is in O2, it follows infy∈O2
vTy ≤ 0.

However, as O2 is the cone {x � 0} it also follows that
infy∈O2

vTy ≥ 0. Thus, infy∈O2
vTy = 0. Hence, vTy ≥ 0

for all y ∈ O2 and it follows that v � 0. Moreover,
from (2), we can conclude that for any j = 1, . . . , N
and any xj ∈ Cj with ‖xj‖1 = 1, vTAjxj < 0. As
Cj ∩

{
x � 0 : ‖x‖1 = 1

}
is compact, it follows from con-

tinuity that by choosing ǫ > 0 sufficiently small, we can
guarantee that vε := v+ε1 ≻ 0 satisfies vT

ε Ajxj < 0 for
all xj ∈ Cj ∩

{
x � 0 : ‖x‖1 = 1

}
and all j = 1, . . . , N .

Here 1 is the vector of all ones.

Finally, it is easy to see that vT

ε Ajxj < 0 is true even
without the norm requirement on xj . This completes the
proof of the theorem. 2

Remark Assume that the application allows to parti-
tion the state space using simplicial cones. Such cones
Cj are generated by non-negative, non-singular generat-
ing matrices Qj ∈ Rn×n

Cj :=
{

x
∣
∣x =

∑n

i=1 αiQ
(i)
j , αi ≥ 0, i = 1, . . . , n

}

(3)

where j = 1, . . . , N and Q
(i)
j is the ith column of Qj . In

that case, we can include the generating matrices into
the theorem and reword it slightly:

1 That is, we show that if (ii) is true, then (i) cannot hold.
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A1, . . . ,AN ∈ Rn×n and N closed simplicial cones Cj
of the type (3), such that Rn

+ = ∪N
j=1Cj, precisely one of

the following statements is true:

(i) There is a positive vector v ∈ R
n such that

vTAjxj < 0 for all non-zero xj ∈ Cj and
j = 1, . . . , N .

(ii) There are vectors wj � 0 not all zero such that
∑N

j=1 Bjwj � 0, where Bj := AjQj.

Remark Condition (ii) above can be checked by run-
ning a feasibility check on a suitably defined linear pro-
gram, [3]. For example, it is easy to see that (ii) is fulfilled
if and only if the following linear program is feasible:

argmax 1
Tw̃

subject to B̃w̃ � 0, w̃ � 0, w̃ � 1

where B̃ corresponds to the horizontally concatenated
Bj , and w̃ to the vertically stacked wj . It is then
straightforward to run a feasibility check on this linear
program, to provide an answer in polynomial time.

Remark We shall see in the next section that Theo-
rem 2 leads directly to very elegant conditions for the
existence of a common LCLF, and give very interesting
insights into the stability of positive switched linear sys-
tems, completing initial work reported in [17].

3 Arbitrarily switching systems

An important special case of the previous results is when
each of the Qj matrices is the identity matrix, namely
when we seek a common linear co-positive Lyapunov
function for a finite set of positive linear systems. In this
situation it is possible to develop a further condition
which allows to check for the existence of a common
LCLF for each of the constituent systems, which in turn
would guarantee the stability of the overall system. This
will be given by Theorem 4 below.

However, before stating that theorem, we need a tech-
nical result which will simplify the proof of Theorem 4.
The following lemma is in fact very similar to Theorem 2,
when each of the generating matrices Qj is the identity
matrix.

Lemma 3 Given N Metzler and Hurwitz matrices
A1, . . . ,AN ∈ Rn×n the following statements are equiv-
alent:

(i) There is a non-zero v � 0 such that vTAj � 0 for
all j = 1, . . . , N . 2

(ii) There are no wj ≻ 0 such that
∑N

j=1 Ajwj = 0.

2 Note that with the assumptions of the lemma, vT
Aj will

always be non-zero for a non-zero v � 0.

As the proof of the lemma follows closely the lines of
that of Theorem 1, it has been moved to the appendix.

Some additional notation is required to present our
second main result. Let the set containing all possible
mappings σ : {1, . . . , n} → {1, . . . , N} be called Sn,N ,
for positive integers n and N . Given N matrices Aj ,
these mappings will then be used to construct matrices
Aσ(A1, . . . ,AN ) in the following way:

Aσ

(
A1, . . . ,AN

)
:=

[

A
(1)
σ(1) A

(2)
σ(2) . . . A

(n)
σ(n)

]

(4)

that is, the ith columnA
(i)
σ ofAσ is the ith column of one

of the A1, . . . ,AN matrices, depending on the mapping
σ ∈ Sn,N .

Theorem 4 Given a finite number of Hurwitz and Metz-
ler matrices A1, . . . ,AN ∈ R

n×n, the following state-
ments are equivalent:

(i) There is a strictly positive vector v ∈ Rn such that
vTAj ≺ 0 for all j = 1, . . . , N .

(ii) Aσ(A1, . . . ,AN ) is Hurwitz for all σ ∈ Sn,N .

PROOF. (i) ⇒ (ii): Assuming that there exists
a positive vector v ∈ R

n such that vTAj ≺ 0 for
all j = 1, . . . , N , this implies, when looking at the
columns of the matrices Aj , that vTA

(i)
j < 0 for any

i = 1, . . . , n and j = 1, . . . , N . Thus, it follows that
vTAσ(A1, . . . ,AN ) ≺ 0 for all σ ∈ Sn,N . Next, we note
that since the A1, . . . ,AN are all Metzler matrices,
by construction so must be all the Aσ(A1, . . . ,AN ),
σ ∈ Sn,N . Finally, applying Theorem 2.5.3 from [10],
we have that all matrices Aσ(A1, . . . ,AN ), σ ∈ Sn,N ,
must be Hurwitz.

¬(i) ⇒ ¬(ii): We show that if there does not exist a
vector v as described in (i), then at least one of the
matrices Aσ(A1, . . . ,AN ) is not a Hurwitz matrix for
some σ ∈ Sn,N .

To begin, assume that there is no non-zero v � 0 such
that vTAj � 0 for all j = 1, . . . , N (note that this is a
stronger assumption than the non-existence of a strictly
positive vector v, as stated in (i); we will relax this as-
sumption below). From Lemma 3 we then know that
there is at least one set of vectors wj ≻ 0 such that

A1w1 + . . .+ANwN = 0 (5)

Next, we express w2, . . . ,wN in terms of w1 using di-
agonal matrices: wj = Djw1 where Dj = diag{dji} for
all j = 1, . . . , N and i = 1, . . . , n. We can then rewrite
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A1D1w1 +A2D2w1 + . . .+ANDNw1 = 0
(
A1D1 + . . .+ANDN

)
w1 = 0

and thus, since w1 ≻ 0, we must have for the determi-
nant ∣

∣
∣A1D1 + . . .+ANDN

∣
∣
∣ = 0 (6)

To simplify notation, define for each mapping σ ∈ Sn,N

the following product pσ :=
∏n

i=1 dσ(i)i for which we
note that pσ > 0 for all σ ∈ Sn,N since dji > 0 for all i
and j. Using the fact that the determinant of a matrix
is multilinear in the columns of that matrix, we can now
express the left-hand side of (6) as

∣
∣
∣
∑N

j=1 AjDj

∣
∣
∣ =

∑

σ∈Sn,N
pσ

∣
∣
∣Aσ(A1, . . . ,AN )

∣
∣
∣ (7)

Recall that the determinant of a matrix is equal to the
product of its eigenvalues. Since the eigenvalues of a Hur-
witz matrix in Rn×n have strictly negative real parts,
its determinant must either be strictly positive (when n
is even) or strictly negative (when n is odd), but never
zero. Thus, using (7) in (6), we conclude that there must
be at least one σ ∈ Sn,N for which Aσ(A1, . . . ,AN ) is
not a Hurwitz matrix.

To recapitulate, we have shown so far that if there is no
non-zero v � 0 such that vTAj � 0 for all j, then at
least one of the Aσ(A1, . . . ,AN ) matrices has to be non-
Hurwitz. However, in order to finish the proof, we need
to extend this result to strictly positive v, as stated in the
theorem. So let us assume that there is no common v ≻ 0

such that vTAj ≺ 0 for all j. If, additionally, there was
no v � 0 either such that vTAj � 0 for all j, the result
follows from the above discussion. However, if there was
such a v � 0, an additional argument is needed.

Assume that no v ≻ 0 satisfies vTAj ≺ 0 for all j. It then
follows that for Aj(ε) := Aj + ε1n×n where ε > 0 and
1n×n is the n × n matrix of all ones, there cannot be a
non-zero v � 0 achieving vTAj(ε) � 0 for all j. This can
be shown again by argument of contradiction: Consider
there was a vector v � 0 such that vTAj(ε) � 0 for all
j and ε > 0. Then

vT
(
Aj + ε1n×n

)
� 0

vTAj � 0− εvT
1n×n

vTAj ≺ 0

for ε > 0 and j = 1, . . . , N , which contradicts the first
assumption; thus, there is no non-zero v � 0 so that
vTAj(ε) � 0 for all j.

Now, choosing ε > 0 small enough to ensure all Aj(ε)
are still Hurwitz and Metzler matrices, it follows from

our earlier argument that there is at least one σ ∈ Sn,N

so that Aσ

(
A1(ε), . . . ,AN (ε)

)
is non-Hurwitz.

Finally consider a sequence of (εk) such that εk → 0
as k → ∞ and with εk small enough so that all Aj(εk)
are still Hurwitz and Metzler matrices. Since these
matrices and thus all Aσ

(
A1(εk), . . . ,AN (εk)

)
de-

pend continuously on εk, it follows for all σ ∈ Sn,N

that Aσ

(
A1(εk), . . . ,AN (εk)

)
→ Aσ(A1, . . . ,AN ) as

εk → 0. And since there is at least one σ ∈ Sn,N for
which Aσ

(
A1(εk), . . . ,AN (εk)

)
is non-Hurwitz this will

also be the case for Aσ(A1, . . . ,AN ). 2

Theorem 4 states that N positive LTI systems have
a common linear co-positive Lyapunov function
V (x) = vTx if and only if all the Aσ(A1, . . . ,AN ) ma-
trices are Hurwitz matrices, for all σ ∈ Sn,N . In that
case, switched system formed by these subsystems is
uniformly asymptotically stable under arbitrary switch-
ing.

Clearly, when AjQj in Section 2 are Metzler and Hur-
witz, then this Hurwitz condition can also be used to give
a solution to the state dependent switching problem.

Remark Note that the above result may also be de-
duced from the more general results on P-matrix sets
given in [22].

4 Final remarks

To conclude our brief paper we note some situations
where our results may be of use.

4.1 Numerical example

As a short example for Theorem 4, consider three Metz-
ler and Hurwitz matrices

A1 =









−12 6 6

1 −10 2

5 3 −10









, A2 =









−12 4 0

6 −10 9

4 3 −13









, A3 =









−9 2 8

6 −10 4

3 0 −11









It turns out that the Aσ(A1,A2,A3) are all Hurwitz
matrices, for any σ ∈ S3,3; hence a switched linear posi-
tive system with these matrices will be uniformly asymp-
totically stable under arbitrary switching. If, however,
the (3,1)-element of A3 is changed from 3 to 5 — note
that after change A3 is still a Metzler and Hurwitz ma-
trix — then the matrix A(3,1,3) =

[
A

(1)
3 A

(2)
1 A

(3)
3

]
will

have an eigenvalue λ ≈ 0.06 which violates the Hurwitz
condition.
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Consider the class of linear positive systems with time-
delay considered by Haddad et al., [8]:

ẋ(t) = Ax(t) +Adx(t− τ)

where Ad is a non-negative matrix and where
(
A+Ad

)

is a Hurwitz and Metzler matrix. As shown in [16], our
results can be used to prove the stability of time-delay
systems whereA switches between a finite set of Metzler,
Hurwitz matrices, which would be a slight improvement
of the results from [8].

4.3 Switched positive systems with multiplicative noise

Consider the class of switched positive systems

ẋ = A(t)x, A(t) ∈
{
A1, . . . ,AN

}

If all N constituent systems share a co-positive linear
Lyapunov function, then it follows that the system

ẋ = A(t)D(t)x, A(t) ∈
{
A1, . . . ,AN

}

where D(t) = diag{dj(t)} for j = 1, . . . , N is a diagonal
matrix, is also exponentially stable, provided that the
dj(t) are strictly positive and bounded for all t and j.
Systems of this type arise in situations where the state
is reset (for example, by quantisation).

4.4 Robustness of switched positive systems with chan-
nel dependent multiplicative noise

An important class of positive systems is the class that
arises in certain networked control problems. Here, the
system of interest has the form:

ẋ = A(t,x)x+
[
C1(t,x) + . . .+Cn(t,x)

]
x

where we assume
(
A(t,x) +C1(t,x) + . . .+Cn(t,x)

)

to be always Metzler and Hurwitz (for all t and
x ∈ Rn

+), where A(t,x) ∈ Rn×n is Metzler, and where
Ci(t, x) � 0 is an n × n matrix that describes the
communication path from the network states to the ith
state; namely it is a matrix of unit rank with only one
non-zero row. Further, we allow the network intercon-
nection structure to vary with time between N different
configurations, so that A(t,x) ∈

{
A1, . . . ,AN

}
and

Ci(t,x) ∈
{
Ci1, . . . ,CiN

}
for i = 1, . . . , n. Our prin-

cipal result can then be used to give conditions such
that this system is exponentially stable. Further, by
exploiting simple properties of Metzler matrices (all
off-diagonal entries are non-negative), we get the robust
stability of the related system:

ẋ = A(t,x)x+
[
C1(t,x)D1(t)+ . . .+Cn(t,x)Dn(t)

]
x

where Di(t) is a non-negative diagonal matrix whose
diagonal entries are strictly positive, but with entries
bounded less than one, i = 1, . . . , n.

5 Conclusion

In this paper we have presented necessary and sufficient
conditions for the existence of a certain type of Lyapunov
function for switched linear positive systems. Examples
are given to illustrate some of the implications of our
results. Future work will consider switched positive sys-
tems with time-delay. We suspect that the results pre-
sented here will be of great value in this future study.
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A Proof of Lemma 3

(i) ⇒ (ii): Assume there is a non-zero vector v � 0

such that vTAj � 0 for all j = 1, . . . , N . Thus,

vTA1 + . . .+ vTAN � 0

and for any set of strictly positive vectors wj ≻ 0,

vTA1w1 + . . .+ vTANwN < 0

vT
(
A1w1 + . . .+ANwN

)
< 0

so that
A1w1 + . . .+ANwN 6= 0

In other words, there are no vectors wj ≻ 0 such that
∑N

j=1 Ajwj = 0.

(ii) ⇒ (i): Assuming that there are no vectors wj ≻ 0

such that
∑N

j=1 Ajwj = 0, we can write

{
A1w1 + . . .+ANwN : wj ≻ 0

}
∩
{
0
}
= ∅

Since the Aj are all Metzler and Hurwitz matrices, it is
easy to show that this implies

{
A1w1 + . . .+ANwN : wj ≻ 0

}

︸ ︷︷ ︸

O1

∩
{
x ≻ 0

}

︸ ︷︷ ︸

O2

= ∅

This corresponds to the intersection of two open convex
cones, O1 and O2. As this intersection is empty, the
two cones are disjoint and there must exist a separating
hyperplane between them, see for instance [19]. In other
words, there is a vector v ∈ Rn such that

vTy < 0 for all y ∈ O1 and vTy > 0 for all y ∈ O2

From the second inequality we get that v has to be non-
negative (and non-zero). The first inequality, in turn,
can be written as

vTA1w1 + . . .+ vTANwN < 0 for all wj ≻ 0

Furthermore, since v � 0, and since the inequality has
to hold for any choice of (strictly positive) vectors wj ,
each individual summand must be less than or equal to
zero. However, this can only be the case if vTAj � 0 for
j = 1, . . . , N , which completes the proof. 2
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