

OTT
O

-V
O

N
-G

U
ER

IC
KE-UNIVERSITÄ

T
M

A
G

D
E

B
U

RG

Otto–von–Guericke–Universität Magdeburg

Diplomarbeit

Algorithm Development and

Testing for Four Legged League

Robot Soccer Passing
von

Florian Knorn
(* XXX. Dez. 1981 in Berlin)

14. September 2006

Eingereicht an die: Otto–von–Guericke–Universität Magdeburg
Fakultät für Verfahrens– und Systemtechnik
Prüfungsamt
Universitätsplatz 2
Postfach 4120, 39016 Magdeburg
Deutschland

Erstprüfer: Prof. Jörg Raisch
Zweitprüfer: Prof. Dietrich Flockerzi

Betreuer: Prof. Richard H. Middleton
Michael Quinlan

ARC Centre for Complex Dynamic Systems & Control
The University of Newcastle
2308 Callaghan, New South Wales,
Australia

Meinem Vater

Table of contents

Outline and objectives vii

Preface ix
Acknowledgments . ix

Declaration of originality . x

Introduction xi

1 Hardware used 1
1.1 Introduction . 1

1.2 Hardware . 2

1.3 Some RoboCup rules . 5

2 Software used 7
2.1 Introduction . 7

2.2 Vision . 8

2.3 Localisation & World Modelling . 10

2.4 Behaviour . 13

2.5 Locomotion . 19

2.6 Modifications . 20

3 Algorithm design 29
3.1 Introduction . 29

3.2 Main concept . 30

3.3 Mathematical transcription . 32

3.4 Pass execution . 40

4 Demonstration 45
4.1 Introduction . 45

4.2 Matlab Simulation . 45

4.3 Practice . 54

Conclusion 61

A Proof & additional plots 65
A.1 Variances after coordinate transformation 65

A.2 Additional plots . 69

B Source code & parameters 73
B.1 Parameters . 73

v

vi TABLE OF CONTENTS

B.2 Source code . 73

List of Symbols 81

Bibliography 83

Outline and objectives

For the Diplomarbeit of Florian Knorn

Otto–von–Guericke Universität Magdeburg

Fakultät für Elektrotechnik und Informationstechnik

Institut für Automatisierungstechnik

Algorithm Development and
Testing for Four Legged League

Robot Soccer Passing

Introduction

This project is motivated by experience at the University of Newcastle in par-
ticipating in the RoboCup International, Four Legged Soccer competition. In
this competition, to the proposers knowledge, practical algorithms for devel-
opment of passing behaviours, whilst highly desirable, have not successfully
been implemented. Previously, limited sensor information and kicking accu-
racy have restricted the ability of teams to develop higher levels of cooperative
behaviour. It is now recognised that some of the lower level algorithms such as
localisation and kick selection have developed to the point where higher level
algorithm development is now needed. The proposed project tackles an impor-
tant part of this in developing deliberate ball passing algorithms, both at a high
level, and including relevant enhancements to lower level modules to facilitate
this behaviour. The project will involve algorithm development, simulations
studies, software implementation, testing and debugging on the Sony ai.Bo®.

The project

The project requires the student to make and integrate developments in sev-
eral areas. Firstly, the student will need to make enhancements to the decision
making and kick execution in the passing robot. This will involve the use
of potential fields (possibly single dimensional) for strategic decision making,
plus behaviour development for obstacle avoidance and kick orientation, fol-
lowed by new kick executions with improved control of distance and timing if

vii

viii TABLE OF CONTENTS

necessary. The second area of work is in relation to the kick receiver. The
student will design new algorithms for positioning prior to the kick being exe-
cuted, and correction of position whilst the ball is in motion. The student will
also be required to conduct testing, redesign, debugging and tuning of existing
extended Kalman filter algorithms for ball velocity estimation. The student
should also develop and test ball “trapping” algorithms, capable of taking a
moving ball, directly into a robot “grab”. The third area of work is in relation
to the cooperation needed to effectively complete the ball pass behaviour. This
will include communication between the robots to coordinate behaviour, and
also communication to improve ball position estimation by incorporating tim-
ing and velocity information derived from the kicking robot. The student will
demonstrate the integration of these new algorithms in the existing software
system to show deliberate team passing behaviour.

Magdeburg, 12 April 2006

Date of issue: 14 April 2006
Date of submission: 14 September 2006

Supervisors: Prof. Richard H. Middleton
Michael Quinlan

1st examiner: Prof. Jörg Raisch
2nd examiner: Prof. Dietrich Flockerzi

Prof. Dr.–Ing. J. Raisch
1st examiner

Prof. Dr.–Ing. A. Kienle
Head of institute

Prof. Dr.–Ing. E. Specht
Examination committee

Preface

There once was a swagman camped in a billabong

Under the shade of a Coolibah tree

And he sang as he looked at the old billy boiling

Who’ll come a-waltzing Matilda with me . . .

— The beginning of Banjo Paterson’s
“Waltzing Matilda” song

Acknowledgments

First of all, I would like to thank Prof. Richard H. Middleton for all he has
done for me, for the opportunities, the support, counsel and wise advice he
has given me in the past six months. Rick, you are one of the few people I
will always look up to, not only in an academic but also a personal way. Few
people have achieved as much as you have, but even fewer managed to stay so
friendly, supportive, caring, modest, yet funny along the way.

The person however I worked most closely with during my time here in
Newcastle was Michael Quinlan, whom I also consider a dear friend of mine,
not only for your important and indispensable help, support and patience with
my Diplomarbeit as well as all those selfless small or big favours over the time
— but especially for the awesome time you made me have, be it down in the
lab, out at some rock concert, on the ski field or simply at lunchtime over in
Jesmond.

When I mention Michael’s name, I also have to thank my other lovely,
charming and funny lab mates — Naomi Henderson, Robin Fisher, Steven
Nicklin and Andrew Bevitt. I deeply appreciate all your help and assistance
with my silly little (and big) problems along the way, and really enjoyed all the
fun we had down here in our “windowless bunker”. It was a pleasure to work
in this friendly, relaxed yet productive atmosphere and I will greatly miss your
company.

It was Dianne Piefke who took great care of me — especially at the be-
ginning of my stay here — and helped me with a number of issues, such as
getting the correct visum, finding a place to stay, enrolment at the university,
etc. Thank you for making my arrival and stay on the virtually other end of
the world such a smooth and hassle free experience.

Besides all the lovely people and staff at International House, the NUsport
Volleyball Club, the Body Jam class as well as the Bar on the Hill, Customs
House, The Brewery and Fanny’s (pubs and bars where I enjoyed copious

ix

x PREFACE

amounts of Australian beer) I would like to send my regards to the follow-
ing people, colleagues, friends and mates for all their company, support, wel-
come distractions and fun time they made me have (alphabetical order, titles
omitted): Aaron Wong, Brady Hardcastle, Carla Piefke, Christian Friedrich,
Craig Murch, Craig Sharpe, Cynthia Angelica and Lorena Pais Soto, Damon
Keen, Dawn, David and Todd Pike, Dimit Yalu, Donato Pantalone, Drew Mel-
lor, Eva Barbay, Evelyne Niederberger, Heather Luciani, Helen Falk, Henning
Bulka, Ingo Preiml, Jason Chua, Jennifer Neils, Jeram Hyde, Jonathon Kirk,
Josie Milner, Joyce Wong, Julie Caudron, Kara Hanwright, Milan Derpich,
Natalie and Alistair Lockhart, Ngoc Mai Tran, Katrin Wolf, Kenny Hong,
Kristen Ochs, Kristina Stiller, Luke Murray, Mary Stokes, Natalie Lockhart,
Nicola Mays, Oliver Keßler, Rebecca Martin, Rebecca Quattelbaum, Robert
King, Samuel Barns, Scott Fitzgerald, Steffi Klinge, Stephan Chalup, Timothy
Moore, Timo Tenhunen, Valérie Faustin, Verena Wiesen, William Ireland, . . .

Finally, I could never overstate my gratitude towards my family and close
friends back home. Thank you for supporting me over the years, for being
there when I needed you, for your patience with me and, most of all, for your
love.

∗ ∗ ∗

Declaration of originality

I hereby declare that this thesis and the work reported herein was composed
and originated entirely by myself. Information derived from the published and
unpublished work of others is acknowledged in the text and a list of references
is given in the bibliography.

Newcastle, Australia, 14 September 2006

Florian Knorn

Introduction

The present day RoboCup competitions have probably exceeded many of the
initial expectations made in the early 1990s when it was founded. Objectives
like drawing attention to and promoting research and education in the field of
robotics and artificial intelligence have certainly been achieved.

Over the years, several leagues have been formed inside RoboCupSoccer.
Using the somewhat visually appealing Sony “entertainment robot” ai.Bo®, [7],
it seems to be the Four Legged League in particular that is getting much media
attention lately. Interestingly enough, this is so far the only league that uses
standardised hardware, i. e. untouched third party robots. This means that
only the software separates the different teams.

We can safely assume that the boundaries of the provided hardware are
pushed to their limits. Also — as every year after the RoboCup tournament
all the participating teams are to publish, share and comment on their code
in their yearly team reports, [4] — most of the teams are roughly at the same
level of capabilities. For instance, the maximum walking speed of the robots
appears to have plateaued over the last years, and there is almost no difference
between the teams any more.

It is clear that, with little room for significant improvements on the physical
side but sophisticated low level behaviour at hand, the general focus shifts
more and more towards the information processing capabilities and the high
level behaviour of the robots. For example, efforts are made to further refine
the vision data processing or introduce more complex team behaviours and
strategies.

Looking at team tactics in particular, no team in the Four Legged League
(to the best of our knowledge) has successfully implemented deliberate in–game
passing behaviour. Reasons for that may be the limited information each indi-
vidual player has available and/or the precision of that information. Besides,
each player acts fully autonomous, i. e. there is no overall decision making in-
stance — which would make the coordination of such complex behaviour much
easier. Also, as mentioned earlier, mature and reliable low level capabilities
were of primary concern.

As passes are an indispensable element in almost every team sport they
would unquestionably enrich the quality of robot soccer and constitute a major
advantage over other teams. It is the development and design of such desired
passing behaviour that lays at the heart of this thesis. This thesis will touch
a number of diverse areas of modern science, such as artificial intelligence,
systems theory, control theory, fuzzy logic or computer science, having the
following structure:

xi

xii INTRODUCTION

The first chapter will give an introduction to the hardware of the robot,
briefly commenting on the input, processing and output equipment provided.
We also state a few important rules from the official RoboCup rule set which
are most relevant for this thesis.

Chapter 2 primarily focuses on the NUbot software in use, developed at the
University of Newcastle, Australia, [3]. As our passing algorithm is integrated
deeply into the existing frame work — and relies heavily on a number of low
level capabilities — we shall describe each of the software modules run on
the robot. At the end of the chapter, we discuss two of the most important
modifications done to the existing software in the course of this project.

In the third chapter, we give a detailed explanation of the design of our
algorithm that makes the actual passing decision — whether to pass at all and,
if so, in what direction to play it. We also lay out the subsequent communi-
cation and cooperation between pass sender and receiver that is required to
coordinate the actual passing action.

The objective of the last chapter is to show in simulation and real practice
the workings and some of the features of our implementation of the passing
algorithm, as well as highlight the potential gain to the overall team perfor-
mance.

The appendices hold a proof, additional plots, the source code of the
developed passing algorithm as well as the concrete choice of parameters used
in the tests.

C H A P T E R 1

Hardware used

We will give a quick introduction to the robots’

hardware, reviewing its input, processing and output

equipment as well as mention a few RoboCup rules.

1.1 Introduction

This short chapter shall serve as a description to the NUbots hardware and also
list some of the most important rules of the Four Legged League. Again, one
particularity is that the robots used are not self built by the different teams.
Rather, an already existing “entertainment robot”, the Sony ai.Bo® ERS–7 is
used, as shown in Figure 1.1 below.

Using the same hardware has a number of advantages: On one hand, teams
do not have to worry about hardware issues, which allows smaller teams and
research institutes (that might not have a large workshop backing them up)
to participate in the competition, and also invites institutes that are more
interested in software and algorithm development to get involved. On the other
hand, with everybody using the same hardware, different financial situations

Figure 1.1: A NUbot (playing Red Team) ready for action.

1

2 CHAPTER 1. HARDWARE USED

are mitigated (i. e. as long as you can afford the retail price of the robots,
you can compete on equal grounds — this is different in other leagues, where,
loosely speaking, spending more money and using a bigger motors will make
you win).

So let us take a look at the hardware and later at a number of rules from
the official RoboCup rules.

1.2 Hardware

The robots are, in their standard stance, about 27 cm long, 20 cm wide and
23 cm heigh to give in idea of their size. In the following, we shall group the
different components into input–, processing– and output related parts. The
following specifications can be found for example in the robots’ user manu-
als, [6].

1.2.1 Input

To perceive the outside world, each ai.Bo® ships equipped with

– a video camera in the head,

– infra–red sensors in the snout and on the chest,

– three touch sensitive buttons on the back, one on top of the head and
one underneath the chin,

– four touch sensors in the paws,

– a microphone per ear,

– three accelerometers (x–, y– and z–axis),

– a vibration sensor.

The video camera delivers pictures at 30 frames per second and is probably
the most important input element. Each camera frame processed consists of a
208×160 pixel YUV picture unfortunately covering only a very narrow a field of
view (55◦ horizontally, 45◦ vertically). Worse, the pictures are of poor quality,
rather noisy, heavily vignetted and extremely sensitive to the particular lighting
conditions, all that requiring a significant amount of software post processing.
See Figure 1.2 on the next page for an example of the quality — a shot similar
to the last figure, but taken directly from another robot.

We do not use the long range infra–red sensor (in the head) to measure
the distance of other objects as the results would not only be significantly
less precise and reliable than those that can be obtained via image processing,
but also as it would be difficult to attribute them to particular objects. We
only fall back to their readings if the robot is very close to the goal and his
entire field of view is filled with goal colour (resulting in the vision system not
being able to calculate the distance correctly) or when dribbling and trying to
dodge defenders. However, the close range infra–red sensor in the robot’s chest
is used much more frequently when determining whether the ball has been
grabbed successfully, and the to keep checking whether it is still in possession.

1.2. HARDWARE 3

Figure 1.2: The same arrangement as in Figure 1.1, this time taken with the
camera of another robot. Note the low resolution, the pixel noise and
the vignetting near the corners of the picture.

Neither the paw sensors, the sensor under the chin, the vibration sensor nor
the microphones are used in our set–up.

1.2.2 Processing

Now that the robot can more or less sense the outside world, this data needs
to be processed. For that, the robots feature

– a 64 bit RISC processor at 576 MHz,

– 64 MB of RAM,

– an IEEE 802.11b wireless interface,

– a Memory Stick™ reader.

All the software resides on a Memory Stick™, and due to Sony’s policies, only
16 MB Memory Sticks™ can be used, requiring a very careful and responsible
handling of resources. The robot’s firmware, operating system as well as all
the device drivers are provided by Sony and cannot be changed or customised,
confining all work to relatively high level programming.

The computationally more expensive task are written in the C programming
language using a Software Development Kit provided by Sony. However, as

4 CHAPTER 1. HARDWARE USED

shutting down a robot, recompilation on the PC, transfer of the binaries to the
Memory Stick™ and rebooting the robot takes at least two minutes, debugging
or parameter tuning can be very tedious. For that reason, most of the behaviour
code, and code that needs a lot of situation dependant tweaking was ported
to the much more high level programming language , [8], which is also
run on the robot. Here, files and changes can be uploaded almost instantly via
File Transfer Protocol (FTP) over the wireless interface, and only the
interpreter needs restarting, which takes about two seconds.

Although , being an scripting language, is much slower than com-
piled C++ and thus anything but suitable for computationally more involved
tasks, it is a major advantage of having development cycles cut down from two
minutes to a couple of seconds. Also, one has always the option of porting
functions back to C++ once they run as desired (fortunately interfacing C++
and functions is very easily done).

1.2.3 Output

Once the “brain” has processed all the inputs it wants to interact with the
outside world. More or less imitating a dog, the robot has

– three motors per leg,

– three motors to move the head,

– two motors to move the tail,

– a motor to open the mouth,

– a motor per ear,

– a speaker (plus a small system beeper),

– a large amount of LEDs in many different colours1.

Each leg can be rotated and spread out at shoulder level, as well as be bent
at elbow level. The head can be rotated in the horizontal plane, pitched up and
down as well as moved up and down at neck level. We do not use the robots
tail or ears,2 nor the speaker. However, the mouth is opened when trapping
or dribbling the ball as it allows for a slightly higher head position so that
the robot gets to see more of the field (again, the camera only delivers a very
narrow field of view, vertically and horizontally).

The numerous LEDs are mainly used for debugging purposes, such as indi-
cating the robot’s overall status, whether it can see the ball, what team it is
playing for (software wise), and the like.

With these relatively rich lists of parts it is easy to understand why these
entertainment robots are now at the centre of serious research. Although the
processor may sound quite powerful, the large amount of tasks it has to take
care of (to start with, just consider processing 34,000 pixels thirty times per
second) demand for extremely efficient algorithms and software design.

1 It is an entertainment robot after all . . .
2 In fact, we usually take the rubber ears and tail off as (for us) they do not serve any

other purpose than randomly falling off.

1.3. SOME ROBOCUP RULES 5

It is precisely this required ingenuity that is one of the key motivations
behind RoboCup. Let us now take a look at some of rules involved in the Four
Legged League.

1.3 Some RoboCup rules

The following rules (considered the most relevant for this thesis) are a subset
of the official RoboCup rules that can be found in the official rule book for the
Four Legged League, [5].

1.3.1 The field

A graphic of the field is shown in Figure 1.3 below. The field dimensions are
540 cm× 360 cm, with a 30 cm resp. 20 cm margin beyond the base– and side
lines. The goals are 80 cm wide, 30 cm deep, and the uniquely colour coded
beacons — indispensable for the robot’s localisation on the field — are 40 cm
heigh, sit 15 cm off the sidelines and 135 cm from the half way line.

Figure 1.3: A RoboCup Four Legged League soccer field, [5]

Our absolute, or “fixed” coordinate system depends on the direction of at-
tack. The x–axis points “up–field”, that is, the goal keeper (usually) looks along
the fields x–coordinate, the y–coordinate pointing to his left. So in Figure 1.3
for instance, if the team plays Red, i. e. defending its own yellow goal and at-
tacking the blue goal, the field’s x–coordinate would point towards the right
hand side of the figure, the y–coordinate upwards.

The origin of the coordinate system lays always in the centre of the field
(kick–off point). A player’s heading ϑ corresponds to the (signed) angle mea-
sured in the mathematical positive sense from the absolute x–axis of the field.
So, for example, if the Red Team robot near the kick–off point would look down
towards the caption of the figure, it would have a heading close to −90◦.

6 CHAPTER 1. HARDWARE USED

1.3.2 Game process

The game consists of two ten minute halfs, with a ten minute half time break.
Each team has four players, one of which is the designated goal keeper. He is
the only player allowed inside his own penalty box. Any other player that enters
it with more than two legs is called an illegal defender, and will be penalised by
being taken out of the game for 30 seconds (it will be put back into game on
the middle of a side line).

Any player grabbing the ball must let go of it (or kick it) within three
seconds. Goal keepers are allowed to hold it up to five seconds if they have
at least two paws inside their penalty box. Robots are allowed to leave the
5.4 m× 3.6 m metre field area, but most not leave the 4 m× 6 m carpeted area
(or get a 30 second penalty).

If a robot that is not actively heading for the ball (intentionally) blocks the
way to the ball for another player then this act is termed obstruction and will
also invoke a 30 second penalty.

Concerning the wireless communication of the robots, the team is allowed
to use in total up to 500 kbit/s. This is relatively little bandwidth as it is
shared by the four robots and includes all the necessary protocol overheads.

With these few important rules in mind and the abovementioned hardware
at hand let us now introduce the software that is run on the robots — trans-
forming a standard ai.Bo® into a NUbot.

C H A P T E R 2

Software used

We will give an overview of the four functional

modules of the software used in the robots, and

describe some preliminary modifications done to

them.

2.1 Introduction

Although the level of present day robot soccer is nowhere near being able
to seriously compete against human players, this second chapter should give
a small insight into the complexity of the software already involved at this
relatively early stage of the feat.

The hardware, firmware and operating system being provided by Sony, the
actual software has to be entirely developed by the different teams competing in
the RoboCup. As it is imperative for most complex problems to be broken down
into smaller, more elementary tasks, the NUbot software was divided into four
functional modules, namely Vision, Localisation & World Modelling, Behaviour

and Locomotion. We shall describe these modules one by one, paying particular
attention to the second and third module. There, a few key modifications have
been made prior to working on the passing behaviour.1 These modifications
will be laid out in the last section of this chapter.

The bandwidth restrictions set by the rules limit the amount of communi-
cation that can take place between the robots. In fact, in our software, the
NUbots only exchange every fifth frame (that is about every 166 ms where they
believe the ball is as well as their own position (including a measure of uncer-
tainty about both). This is particularly useful in situations where the robot
cannot see the ball, or to determine the player’s own ideal position on the field,
based on the game situation as we shall see later on.

Although a much more in–depth description of the different software mod-
ules can be found especially in last years team report, [17], and the ones from
previous years (see NUbot homepage [3]), we shall briefly present them here to
provide some of the background on which this thesis’ work stands. Let us start
off with the Vision module.

1 It is important to mention that some of these modifications are not directly related
to deliberate passing behaviour, the topic of this thesis, and could be considered off–topic.
However, considering the amount of time spent on them, their relevance and contribution to
the overall game performance (especially a few weeks before the 2006 RoboCup) author and
supervisors consider them worth mentioning here.

7

8 CHAPTER 2. SOFTWARE USED

2.2 Vision

The vision module is most elementary to the robot’s performance on the field.
Even with the most sophisticated behavioural algorithms, the robot would be
rather useless if it was left blind. The following section gives an overview of
the steps involved in the image processing and the techniques used to detect
different objects on the field.

2.2.1 Algorithms used

To perceive the outside world, the robot evaluates thirty pictures per second,
delivered by the built in camera. It is quite common among teams in the
RoboCup to reduce the information by a sequence of different algorithms:

Image Pre–filter → Colour classification → Blob formation → Object detection

(a) Initial picture (b) Colour classified

(c) Blobs formed (d) Objects detected

Figure 2.1: The original picture (a) being colour classified (b), having blobs
formed (c) and objects recognised (d). Note that the blobs found and
shown in (c) have been overlayed on the first two pictures. Objects de-
tected are the yellow goal, the ball and two beacons.

2.2. VISION 9

After pre–filtering (see below), the colour of each pixel is narrowed down
to one out of sixteen colours2 using a lookup table. Then “blobs” are formed
by combining adjacent pixels of same colour.3 The last step then recognises
objects, such as the ball, goals, beacons, and stores the information about
them, such as bearing and distance, in the global Object Array, which is used
by the rest of the software. Examples for each step are shown in Figure 2.1.

2.2.2 Pre–filtering

Before being handed on to later algorithms, all the pictures pass one or two
filters. The first one, always applied, tries to compensate for the lens’ vignetting
effect (pixels getting darker the further away they are from the optical axis of
the lens).

The second filter de–skews the image if the software attempts to fit a circle
to the ball (to determine bearing and distance more precisely). Skewing occurs
when the camera is panned at high speeds. The way the CMOS sensor works,
it reads the pixels horizontally, line by line, with the image not being held for
each frame, but continuously re–exposed. This can result in the image shifting
considerably by the time the scan has passed from the top left pixel to the
bottom right. Knowing how fast the pixel scan occurs and how fast the camera
is panning, one can compensate for these effects, as shown in Figure 2.2 below.

(a) Initial picture (b) De–skewed picture

Figure 2.2: Demonstration of de–skewing an image. Observe how much the
circle fitting algorithm profits from the correction.

2.2.3 Object recognition

It is less relevant for us to present more details on the intermediate steps of
the image processing. What we should remember from this important software
module is, however, which objects can be recognised, that these objects are

2 Just to name a few: ball orange, beacon blue, shadow blue, white, green, . . .
3 Before being passed on to object recognition, blobs may however be rejected, or modified

by combining adjacent blobs based on extensive heuristics.

10 CHAPTER 2. SOFTWARE USED

recognised on a per–frame basis and that different techniques are used to detect
different objects.

In this year’s code, the following objects could be recognised by the software:

– ball,

– robots,

– beacons,

– goals,

– goal posts,

– corner points

Some of these objects having considerably different shapes, it is clear that
different algorithms have to be used to estimate the distance to the objects. The
ball distance and bearing for instance is determined by using a least squares
based circle fitting algorithm (as can be seen, for example, in Figure 2.2), where
beacon distance is calculated from the amount of separation between and the
size of the two colour blobs that characterise the beacon.

When the software has detected an object and was able to determine its
distance and bearing, it adds that object along with that information to a
globally accessible array (this array is flushed at the beginning of each frame,
as, again, Vision works on a per frame basis). Other modules can then query
that array and make use of the objects found in it — as our next module will
do very frequently.

2.3 Localisation & World Modelling

With the different objects that the robot managed to recognise in one frame
stored in the global Object Array, the robot can use that information to deter-
mine its own position, as well as that of the ball and the ball’s velocities. Let
us take a look at how this is done.

2.3.1 State variables

In our philosophy, the most important things for a robot to consider should
be its own position as well as the ball’s position and velocity. So, throughout
the years, the NUbot software always focussed on a state vector containing the
following seven variables:

x =

x
y
ϑ
xb

yb
ub

vb

(2.1)

The first three states are the robot’s own x– and y–coordinates as well as
heading, and the last four the ball’s position and velocity components.4 All

4 A figure showing all these variables can be found on page 22.

2.3. LOCALISATION & WORLD MODELLING 11

lengths are measured in centimetres, the speeds are given in cm/s. Using
digital hardware and getting new information at the frame rate of the camera,
the states are time discrete, the sampling time being 1/30 s.

As the measurements from the camera are not overly precise and often
missing (when the line of sight to the ball or a beacon is obstructed for instance),
many teams use an Extended Kalman Filter to estimate the above states.
The following section will describe how the currently implemented filter was
designed.

2.3.2 Extended Kalman Filter

We shall now introduce the Kalman Filter used to estimate the robot’s own
position as well as the position and velocity of the ball. See [11] or the great
introduction in [18] for more background information on the topic. Technically,
our filter has to be called “extended” as it contains non–linear elements in the
time and measurement update functions.

Data used

To estimate the robot’s state vector (2.1) at frame k, the Extended Kalman
Filter is given distance and bearing of every object Vision has reported in that
frame. After extensive tests of the camera and the algorithms used, we are
able to quantify the confidence about these measurements (for instance, if the
ball is very far away, the limited resolution of the camera will have a negative
impact on the performance of the circle fitting algorithm, thus lowering the
precision of the distance measurement), which is a prerequisite for the filter.

Notation

In the following, we shall always use xk (or sometimes x(k)) to denote the
state vector in frame k. The concept of a priori states is common in literature,
and we shall use it here as well. It refers to variables that are pure estimates,
not yet “corrected” by real measurement data. We mark those variables with a
superposed minus, where as variables that are (corrected) estimates of others
will be marked by a hat. So x̂−

k is the a priori estimate for the state vector
x in frame k and P−

k will be the a priori error covariance matrix (a diagonal
matrix quantifying the filters uncertainty about its estimates of the different
states).

Let f(x̂k−1) denote the function that estimates the state vector of frame k
based on the previous frame’s estimate (together with information about the
robots movement between the two frames, coming from Locomotion):

f(x̂k−1) = x̂k−1 +

df(k) cos
(

ϑ̂(k)
)

− dl(k) sin
(

ϑ̂(k)
)

df(k) sin
(

ϑ̂(k)
)

+ dl(k) cos
(

ϑ̂(k)
)

ϕ̂(k)
ûb(k)/30
v̂b(k)/30

0
0

(2.2)

12 CHAPTER 2. SOFTWARE USED

where df(k), dl(k) and ϕ(k) are the amount of forward– and sidewards motion
as well as turn in frame k. The ball position changes by its current speed
divided by the time passing between frames. We define A to be the Jacobian
of this function with respect to the different states.

Furthermore we introduce the diagonal matrix Q as the model covariance
matrix. It expresses our confidence in model and odometry data, as well as
ensures that the estimate variances increase when no objects have seen for a
certain amount of time.

To facilitate the software implementation, the filter has been set up to use
two scalar measurements zi, with the index i standing for either a distance
(i = 1) or a bearing (i = 2). For that reason, the Kalman Gain ji,k will be a
column vector, and ri, the respective measurement’s variance, a scalar.

We also need to define two non–linear functions hi(x̂
−

k) which relates the
current a priori state estimate to the measurement zi, i. e. calculates the ex-
pected distance and bearing to an object o based on x̂−

k . This boils down to
simple geometry:

h1,k(x̂
−

k) =

√

(

x̂−(k)− xo(k)
)2

+
(

ŷ−(k)− xo(k)
)2

(2.3a)

h2,k(x̂
−

k) = tan−1

(

ŷ−(k)− yo(k)

x̂−(k)− xo(k)

)

− ϑ̂−(k) (2.3b)

again, where xo(k), yo(k) are either the known (and never changing) coordinates
for beacons and goals, or, in case of the ball, the a priori estimate of its position
x̂−

b (k), ŷ
−

b (k).
Finally, let cTi,k be the Jacobians with respect to the different states (result-

ing in row vectors).5

Time Update

Following the classical Extended Kalman Filter approach, let us first write
down the time update equations:

x̂−

k = f(x̂k−1) (2.4)

P−

k = AkPk−1A
T
k +Qk (2.5)

These equations give us an a priori estimate of the state vector for the new
frame k as well the a priori covariance of this estimate, based on the previous
frame’s state estimate x̂k−1 (and odometry data) as well as error covariance
matrix Pk−1.

Measurement Update

In this step, we include the real measurements to correct / improve the a priori
estimate:

ji,k = P−

k ci,k

(

cTi,kP
−

k ci,k + rk

)−1

(2.6)

x̂k = x̂−

k + ji,k
(

zi,k − ẑi,k
)

(2.7)

Pk =
(

id− ji,kc
T
i,k

)

P−

k (2.8)

5 They are shown calculated on page 20.

2.4. BEHAVIOUR 13

where ẑi,k = hi(x̂
−

k). As we are using scalar measurements, distance and
bearing update the states separately (in the actual C++ implementation, a
for –loop is used). Also, an outer loop iterates through the different objects
found in the Object Array in the current frame.

The order in which the updates are done (that is distance measurement first,
then bearing — or vice versa — or in what order the objects are used from the
Object Array) does have an impact on the estimates. However, it is believed
that the impact of this correlation is minimal, as no particular attention is
given to this issue in the implementation, or the team reports.

Working principle

With the above equations, how does the filter actually work? As we can see,
these equations are recursively defined. This requires well defined initial states.
These are set to be robot and ball sitting almost at the kick–off point, with a
variances covering the entire field, the robot looking straight ahead in offensive
direction, with a variance of a whole turn. The ball is assumed to have zero
velocity (but, again, with a variance around the maximum speed the ball could
travel with under normal circumstances).

So, robot and ball are assumed to be in some fixed initial state, but with
these massive variances, the filter will pay hardly any attention to these arbi-
trary initial conditions. Rather, it will attribute a lot of weight to the measure-
ments. This can be seen in (2.6) on the preceding page, where large elements
in P−

k will cause large entries in ji,k, which in turn will put a lot of empha-
sis on the difference between expected and real measurement in (2.7). If the
difference is large (an indicator, that estimated state and real states are very
different), a strong correction to the state estimate will take place, based on
this difference.

If in turn, the filter has become quite confident about its state estimate over
a period of time, i. e. entries in P−

k are very small, a rather noisy measurement
(indicated by a large ri,k) will only have little impact on the estimate, as the
respective entries in ji,k will be very small. This is the main idea and advantage
of using an Kalman Filter. It can dynamically shift its “trust” in either its own
estimate, or external measurements, based on the variances of both.

As mentioned in the introduction, an important modification has been done
to the above set–up. For the flow of the document, these modifications are
described in the last section of this chapter. Let us for now assume that the
filter works well, and the robots now “know” where they are on the field, what
direction they are facing, where the ball is and how fast it is moving in what
direction, in order to move on to the presentation of the next software module.

2.4 Behaviour

As we mentioned in the introduction, with most of the low level skills al-
ready pushing the boundaries of what is physically possible with the provided
hardware, the attention in the RoboCup shifts more and more towards team
behaviour and strategy. Due to the complexity of the behaviour code we shall
also just briefly lay out some key facts and ideas involved in it.

14 CHAPTER 2. SOFTWARE USED

2.4.1 Individual behaviour

Before commenting on team dynamics, let us mention some of the important
individual behaviours the robots can show.

Move to point

This behaviour allows for four different variations. The robot can run directly
to a point (with no particular regard to its own orientation) or it can move to
a point always keeping a specified heading (such as facing the ball, or the goal
for instance). It can also go to a point either facing forward or backward, and
then turn to a specified heading, once it has reached the destination.

Chasing

An important feature of the robots is the chase mode. In this mode, the robot
will run after the ball as fast as it can, and attempt to grab it, once it has
gotten close enough.

Contrary to most of the other teams at RoboCup, the NUbot chasing code
will not slow down the robot prior to a grab. Although this results in occasional
“clumsiness” when trying to grab the ball (that is, the robot might just knock
the ball away with its chest, failing to execute the grab motion at the exact
moment required for a successful grab), it is the great speed advantage that
has given us an important advantage in many situations.

Another key advantage of our code over other teams was the dodge or
avoiding feature while chasing. If a robot is chasing a ball, and the direct line
of sight is obstructed by another robot, the code will add a horizontal, strafing
component to the walk. This usually results in a nice arcing motion around
obstacles, hardly influencing the forward speed at all.

Grabbing

Once the ball is in a specific area in front of the robot, a grab can be triggered.
This depends, of course, on the exact location of the ball, which is crucial to a
successful grab, as well as a number of sanity factors (such as the robots tilt for
instance — if it is leaning badly to one side, the grabbing motion will usually
not be successful).

An internal timer is started after a successful grab in order to respect the
three second rule. This timer will make the robot let go of the ball, or kick it,
depending on its heading, if the ball has not been kicked earlier.

Dribbling

When the robot has successfully caught the ball, it must be able to turn freely
and move around, with good holding of the ball being very important. This is
achieved by a slightly loose “hold” of the ball between the front legs and under
the chin, with the mouth open to allow for the highest possible head position
(in order to minimise the impact on vision distance caused by the lowered head
position).

2.4. BEHAVIOUR 15

Lining up goals

Moving on, let us assume the robot has dribbled towards a position where it
is sensible to take a shot at the goal. The actual lining up involves two steps:
first, a rough lining up (that is turning in the right direction to face the goal at
all), then a much more fine tuned aiming at the largest gap between the goal
posts and the goal keeper.

The rough lining up is done by turning towards the goal, either based on
vision, or just pure localisation. Determining the gap to be aimed at is then
done by using scan lines (checking the colour of pixels), which are run down
vertically at fixed intervals.

Here also, the robots can dodge obstacles, prior to kicking. This is very
useful in avoiding defenders and has been a great advantage on numerous oc-
casions.

Kicking

Over the years, a large variety of kicks have been created. However, only a
fraction of them are actually used. They were selected based on

– whether they were reliably executable by every robot6

– whether they allowed for precise aiming and/or fast execution

– their range to be able to kick at different distances.

For our passing later on, we chose one particular kick which was considered to
be the most reliable (being consistent and predictable).

Diving

If the ball is calculated to pass the player in close proximity, a dive may be
triggered. The robot will spread its front legs in order to cover a wide area.
This can be done by field players, but is a key movement for the goal keeper.
Recently, more controlled dives have been introduced, where the robot only
dives to the side where the ball is thought to pass by.

This concludes our summary of deliberate individual behaviours. We shall
now see, how our ai.Bo®s work together as a team.

2.4.2 Team behaviour

As in real soccer, it is not only the skill of the individual players, but the
collective effort, the team play that makes the difference. But although there
is some communication between the robots, it is limited to telling the other
robots where the ball and oneself is believed to be. There is no “I’ll go for it” or
“Watch your six” in our game,7 there is no captain in the team telling the other
players what to do (which, however, has been implemented by other teams on
the RoboCup, but has been decided against in our team). All coordination
follows only from the decisions made by each robot individually.

6 And not only the “physically fittest”, due to wear and tear of the joints and gears.
7 Certainly, this will — has to — change at some stage in the future, if robots are finally

to compete against humans in 2050.

16 CHAPTER 2. SOFTWARE USED

It is the aim of this thesis to add some more cooperation to the team by
implementing deliberate passing behaviour that involves communication and
coordination between the robots. Before moving on to that, let us first mention
the different formations the team can take, and how the robots will decide on
the best position for them.

2.4.3 Formations

With only four players per team on the field, one of which is the goal keeper,
there is not great deal of formation tactics involved here. Basically, the team
can take two offensive and one defensive formation. These are taken depending
on which half of the field the ball is in. When attacking (ball in the opponents
half), two robots will go front left and front right, a sweeper staying back in
the own half, in line with the ball.

When the ball enters the own half, two robots will fall back, one remaining in
the opponents half (again in line with the ball). Later, an additional defensive
formation has been added, where a sweeper will position itself between the ball
and the own goal, just outside of the penalty box, another player chasing for
the ball, the third again staying in the opponents half.

2.4.4 Positioning

The actual positioning during the entire game is done using a potential field.
This is a classical approach (see [12], or a more detailed explanation in [13]),
and quite common in RoboCup practice, [14]. Basically, different objects on the
field form attractors and repulsors, and the superposition of their effects create
a resulting shift vector, which determines where the robot is to go. Contrary
to other teams, we not only use point sinks and sources, but also lines (and
later segments, as described at the end of this chapter).

Potential field

A very intuitive way of looking at the potential field would be to interpret
the term “potential” as “height” or “elevation”. Think of the field as a surface
containing peaks, ridges, ditches and fissures. The robot could then be seen as
a ball left loose on this relief — always rolling down along the steepest slope
at its current location.8 A visual representation of our field (however without
any players, or the ball) is shown in Figure 2.3 on the facing page. Note the
side lines and the high rising in the centre of the lower goal line. They prevent
the robots from leaving the pitch and from entering their own penalty box (in
order to respect the illegal defender rule).

In the implementation, we fortunately do not have to calculate the actual
potential field itself as shown above. Only the local gradient is of interest
and has to be determined. This is done by summing up the influences of the
different points and lines involved, as we shall see later on.

8 To be overly precise, it would have to be a ball without inertia.

2.4. BEHAVIOUR 17

Figure 2.3: Visual representation of the entire potential field, using a point
repulsor in the own goal centre to prevent an “illegal defender”.

Objects

So which are objects influence the robot’s positioning? For all players, the
side lines are repulsive. Also, points of influence are the ball, the player’s
home position, its team mates, and the goals. Obviously, all of them will have
different parameters (the ball for instance is a very strong attractor, with a
very wide spread area of influence, where team mates are small repulsors, to
prevent crowding) depending on the role of the player in the current formation,
as well as its current mode (whether it is chasing the ball, it is to assume initial
formation for kick–off, etc.).

Potentials

To determine the influence of points and lines, we should define them in a more
mathematical way. We shall characterise them by their position as well as two
parameters: a “height” and a “spread” factor:

Definition 2.1 (Potential created by a point)
We define the potential pP created at some point (x, y) by the potential

point P = (xP, yP) as follows:

pP(x, y) = αP · exp
−d2P
σ2
P

(2.9a)

18 CHAPTER 2. SOFTWARE USED

with

dP =
√

(x− xP)2 + (y − yP)2 (2.9b)

where αP is the maximum potential and σP the spread.

In a similar way, let’s define the influence of a line on a particular point’s
potential.

Definition 2.2 (Potential created by a line)
A potential line L = (AL, BL, CL), defined by ALx+BLy+CL = 0 creates

at some point (x, y) the potential

pL(x, y) = αL · exp
−d2L
σ2
L

(2.10a)

with

dL =
ALx+BLy + CL

√

A2
L +B2

L

(2.10b)

and αL as the maximum potential, σL the spread.

As mentioned above, it is the steepest gradient that determines where the
robot will move. The gradient being a linear operator, we can, in order to
calculate the local gradient, just sum up the individual gradients resulting
from the points and lines.

Gradients

For the above equations, determining their contribution towards the gradient
is relatively straightforward. We find the different components of the gradient
at some point (x0, y0) by calculating the partial derivatives along the two axes.
So, for (2.9), we find

∂pP(x, y)

∂x

∣

∣

∣

∣

(x0,y0)

= −2αP

σ2
P

(x0 − xP) exp
−d2P
σ2
P

(2.11a)

and

∂pP(x, y)

∂y

∣

∣

∣

∣

(x0,y0)

= −2αP

σ2
P

(y0 − yP) exp
−d2P
σ2
P

(2.11b)

Similarly, the components of the gradient created by (2.10) are

∂pL(x, y)

∂x

∣

∣

∣

∣

(x0,y0)

= −2αL

σ2
L

AL

A2
L +B2

L

(ALx0 +BLy0 + CL) exp
−d2L
σ2
L

(2.12a)

and

∂pL(x, y)

∂x

∣

∣

∣

∣

(x0,y0)

= −2αL

σ2
L

BL

A2
L +B2

L

(ALx0 +BLy0 + CL) exp
−d2L
σ2
L

(2.12b)

2.5. LOCOMOTION 19

From here, the overall gradient is calculated by summing up the respec-
tive components resulting from the different objects. These components then
determine the robots movement (its heading is usually governed by the balls
location).

This concludes our remarks on the robots behaviour, and we shall now look
at the last software module.

2.5 Locomotion

This modules takes care of all the physical actions of the robot, that is control-
ling all the motors involved in order to move the robot around the field, carry
out the grabbing, kicking or diving for the ball motions, or move its head when
searching for it.

It is important to mention that most of the low level control is done by
the robot’s firmware. So all the movements at the end are commands to the
drivers, in the form of a desired angle together with a desired time, in which
this angle is to be reached.

2.5.1 Walk

Particular attention has been given to the robot’s walk. Again, machine learn-
ing has been employed to maximise the speed, which is around 42 cm/s now,
depending on the robot. See M. Quinlan’s great PhD thesis [16] for more
details.

An important feature of the walk is not only its speed, but its omnidirec-
tionality. The Locomotion Engine can be given not only a forward component
for setting the speed of the walk, but also a sidewards component, as well as a
desired turn rate, giving us all the flexibility needed for efficient game play.

This parametrised walk is made possible by individual leg control (for in-
stance, smaller steps on one side of the robot allow for a turning component in
a normal forward walk) together with a very fast yet robust re–synchronisation
algorithms, needed in particular when drastically different individual leg move-
ments were made.

2.5.2 Head control

This boils down to two elementary functions — general movements, and object
tracking. In the first mode, a certain head motion is performed, in order to
search for the ball, pear at a beacon or the like, without any feedback or
reaction to what is actually seen.

Tracking however, is a proper control task, a classical visual servoing prob-
lem. Usually, once the ball has been spotted, the head will do its best to track
it, keep it in the field of vision, independent of what the body “undercarriage”
is doing.

In both modes, it is crucial that the pitch of the head, i. e. the vertical
elevation of the field of view, is carefully kept within certain limits, so that nei-
ther vision distance is unnecessarily reduced or beacons (which are the highest
objects on the field) are overseen by having the head to low, nor that too much
noise or disturbances are caught (for instance, an orange shirt in a crowd around

20 CHAPTER 2. SOFTWARE USED

the field could be misinterpreted as a ball, or the many additional colour blobs
spotted could slow down the vision processing) when looking up too heigh.

The NUbot panning motion of the head, when searching for the ball, is
slightly slower than in other teams. The slight disadvantage in terms of speed
is outweighed by the reliability to actually recognise the ball when it comes
within the field of view (other teams often seem to “overlook” the ball with the
head panning at high speeds).

These remarks close our introduction to the existing hard– and software
set–up of the robot. The last section of the chapter is dedicated to the early
modifications we did.

2.6 Modifications

The following changes to the current software, done before working on the
actual passing algorithm, greatly improved the success rate for grabbing (which
makes passing a lot more effective), fulfilled last minute needs for the 2006
RoboCup competition and allowed the author to get a deeper insight into the
current software of the robot.

These modification took place in two areas — the Extended Kalman Filter,
and the potential field. We shall start with the former.

2.6.1 Extended Kalman Filter

As mentioned earlier, the measurements used in the Extended Kalman Filter
are distance and bearing, coming straight from the Vision module. Using these
measurements directly usually proses no problems for most of the objects on
the field — but for the ball. Obviously, the distance measurement will fre-
quently tend towards zero (especially when chasing the ball). We have shown
in Subsection 2.3.2 on page 11 that the Extended Kalman Filter uses the Jaco-
bians cTi of the measurement model functions (2.3). Having the estimated ball
distance tend towards zero will result in numerical issues in these Jacobians,
which becomes apparent, when we calculate them.

Jacobians

Let x̂− and ŷ− denote the current a priori estimates of the position of the
robot, x̂−

b and ŷ−b those of the ball. To improve readability, we shall omit
the superposed minus as well as the index k in the following. We find for the
Jacobians of the measurement model functions

∂h1(x̂)

∂x̂
= cT1 =

(x̂− x̂b)/d̂

(ŷ − ŷb)/d̂
0

(x̂b − x̂)/d̂

(ŷb − ŷ)/d̂
0
0

T

2.6. MODIFICATIONS 21

and

∂h2(x̂)

∂x̂
= cT2 =

(ŷb − ŷ)/d̂2

(x̂− x̂b)/d̂
2

−1

(ŷ − ŷb)/d̂
2

(x̂b − x̂)/d̂2

0
0

T

with d̂ =

√

(

x̂− x̂b

)2
+
(

ŷ − ŷb
)2

.

Problems

Clearly, when the filter’s estimate of the ball’s position tends towards the robots
own position (as it should, when the ball is approaching the player’s chest),
numerical problems can occur (potential division by zero). These are believed
to be one of the reasons for the occasional “explosion” of the robot’s position
(that is, a sudden delocalisation of the robot, i. e. the robot position jumps
significantly inside a couple of frames) as well a limiting factor for the number of
successful grabs. One method for preventing these numerical issues is described
in the following.

Relative ball position

Switching to a different coordinate system when the ball comes closer (we have
chosen an arbitrary 50 cm as threshold) will result in a different Jacobian,
potentially preventing our numerical problem.

We suggest the use of a so–called “relative ball” coordinate system, which is
not a local polar coordinate system (corresponding to the ball’s distance and
bearing), but a local Cartesian coordinate system. We consider the ball’s x–
and y–coordinates (xr

b, y
r
b) relative to the current robot’s current position and

heading.

Due to the classical set–up (relative coordinates are already used internally
elsewhere in the software), they are oriented as follows: if the robot looks
straight ahead, it looks along the positive direction of its y–axis, the x–axis
extending towards its right, as shown in Figure 2.4 on the following page.

Modification of the Extended Kalman Filter

The measurements coming from Vision can be transformed easily into this new
coordinate system. For a measurement couple distance and bearing of the ball
(db, ϑb), we have simply

xr
b = −db sinϑb (2.13a)

yrb = db cosϑb (2.13b)

22 CHAPTER 2. SOFTWARE USED

yrb

xr
b

ϑb

yr

xr

ϑ

db

y

x

yb

xb

y–axis

x–axis

×

Opp. goal
centre

×

Field
centre

Figure 2.4: Overview of most of the important coordinates introduced so far.

These new measurement variables result in new measurement model func-
tion hr

i(x̂), replacing (2.3) on page 12:

hr
1(x̂) =

(

x̂− x̂b

)

sin
(

ϑ̂
)

−
(

ŷ − ŷb
)

cos
(

ϑ̂
)

(2.14a)

hr
2(x̂) =

(

x̂− x̂b

)

cos
(

ϑ̂
)

+
(

ŷ − ŷb
)

sin
(

ϑ̂
)

(2.14b)

They also change the Jacobians which is exactly what we wanted to achieve.
With i = 1 now standing for the “measurement” of the ball’s relative x–position,
i = 2 that of it’s relative y–position, we have

∂hr
1(x̂)

∂x̂
= cr1

T =

− sin(ϑ̂)

cos(ϑ̂)
(

x̂− x̂b

)

cos
(

ϑ̂
)

+
(

ŷ − ŷb
)

sin
(

ϑ̂
)

sin(ϑ̂)

− cos(ϑ̂)
0
0

T

and

∂hr
2(x̂)

∂x̂
= cr2

T =

− cos(ϑ̂)

− sin(ϑ̂)
(

x̂− x̂b

)

cos
(

ϑ̂
)

+
(

ŷ − ŷb
)

sin
(

ϑ̂
)

cos(ϑ̂)

sin(ϑ̂)
0
0

T

2.6. MODIFICATIONS 23

The clear advantage over (2.3) on page 12 is that, here, no term is divided
by the ball distance, thus preventing the abovementioned numerical problems.

Covariances

Finally, before being able to implement the modified filter, we need to determine
the new measurement variances rri . As argued in Appendix A, we are safe to
use the measurement covariance from the original distance measurement (that
is coming from Vision) for both xr and yr, i. e. rri(k) = r1(k) for i = 1, 2.

Results and demonstration

It is fairly hard to demonstrate the improvement of the robot’s ball handling
capabilities, especially the grabbing,9 but some first statistics indicate an in-
crease of at least 20% in the success rate for grabs.

Figure 2.5: Testing the effect of our modification of the robot’s Extended
Kalman Filter on its localisation.

However, the beneficial effect on the robot’s localisation could be demon-
strated by running the two different Extended Kalman Filter versions side by
side. See Figure 2.6 on the next page for plots of the player’s estimated po-
sition with and without using the “relative ball” coordinate system, compared
to his real position (the truth data has been gathered by analysing a video of
the experiment, as shown in Figure 2.5).

In the experiment, the ball has just been removed from the robot’s chest
near field coordinates (60,0). It was then placed back on the field closer to the
goal, near (190,-60). At first, the player turns on the spot to search for the
ball. Once he has seen it again, he starts chasing it.

9 Mainly for two reasons. First, too many parameters involved in grabbing depend on the
position estimates and thus had to be completely retuned with the new, improved estimates.
Second, it is almost impossible to reproduce the exact situation (and Kalman filter history)
twice to run it with and without the modification.

24 CHAPTER 2. SOFTWARE USED

Field x coordinate GGGGGGGGGGA

F
ie

ld
y

c
o
o
rd

in
a
te

GG
G
G
G
G
G
G
G
GA

RB used

No RB

True pos.

0 30 60 90 120 150 180 210 240 270
-160

-140

-120

-100

-80

-60

-40

-20

0

20

Figure 2.6: Comparison of the robot’s localisation with and without using the
“relative ball” coordinate system with some truth data, which has been
obtained using video footage of the experiment.

During the time when he could not see it, the ball stayed — from the
Extended Kalman Filter’s point of view — near (60,0), with continuously in-
creasing variance. Once Vision detected the ball again, this time near (190,-60),
the filter had to “catch up” as quickly as possible on that new location. This
is where the two implementations start to differ.

Looking at Figure 2.6, which displays the estimated robot position frame
by frame, we can see the “explosion” of the model not using the “relative ball”.
The very large corrections quickly shift the perceived robot position away from
its true value. This can be explained by looking at (2.6) and (2.7) on page 12.
Here, a large a priori covariance matrix is multiplied by the large Jacobians of
the measurement model functions and thus create the strong corrections.

The model using the “relative ball” coordinates, however, shows smoother
updates of the robot’s position which stays significantly closer to its real values.
One may also note the near constant offset between estimated and real positions
here. This can be explained by the fact that on the way to the ball, the robot
could only see two objects — the ball and the right goal post. This was not
enough (and precise) information for the Extended Kalman Filter to be able
to correct the initially existing offset.10

10 Nevertheless, this is not a problem when it comes to chasing and grabbing the ball,
as in such a situation it is almost entirely the ball measurements that update the robot’s
(and ball’s) estimated position — resulting in the relative position of both being estimated
correctly.

2.6. MODIFICATIONS 25

These remarks finish our section on the modification of the Extended Kal-
man Filter. Let us close this chapter by discussing our second preliminary
modification to the original game code.

2.6.2 Potential field

The modification done here is the addition of a feature. At the moment, the
potential field as introduced in Subsection 2.4.4 on page 16 only allows for
points and (infinite) lines.

Problem

In order to prevent an “illegal defender”, until now a strong repulsor for all
players other than the goal keeper was placed in the middle of the own penalty
box, as we have seen earlier in Figure 2.3 on page 17.

Although simple and computationally cheaper, there is a major drawback
in using this technique to prevent a robot from entering its own penalty box.
It is obviously hard to evenly cover a rectangular area with a circular object.
Either you “over–” or “undercover” the area.

Solution

To solve this problem and give even more flexibility to the potential field, we
introduced another “object”. In addition to points and lines, we can now also
add segments to the potential field. These are then used to cover the penalty
box much better, and could also be used for other purposes.

Implementation

Mathematically, our segments are a combination of two points and a line.
They are defined by their two end points, and a height and spread factor.
The calculation of the resulting gradient involves two steps: first, using some
vector maths and a few simple logic test, it is determined whether the current
point lays between, or outside of the two points that characterise the segment.
Then, either calculate the local gradient using the formula for a point or a line
potential.

Let us assume a situation as shown in Figure 2.7 on the next page, and we
want to calculate the segment’s effect on the local gradient in P, Q and R.

1. Location Using two dot products and two logical checks, we can determine
whether the point is under the influence of the segment (that is when it lays
in region B), or the points S1 or S2 (regions A and C respectively).

Let us call the property of the point being in either A, B or C respectively
A, B and C. We then have

AB ⇔ s ·p2 < 0

BC ⇔ s ·p1 < 0

26 CHAPTER 2. SOFTWARE USED

A B C

×

S1

×

S2

×

P

b

b

p1 p2

s

Figure 2.7: Illustration for determining where a point P1 is relative to a
segment given by the points S1 and S2.

In the next step, we perform the following two logical tests:

A ⇔ ¬(BC) ∧ (AB) ∨ s ·p1 = 0

C ⇔ ¬(AB) ∧ (BC) ∨ s ·p2 = 0

If neither of them is true, then B is the case, i. e. P lays between the end points
of the segment, thus is under the influence of the line.

2. Gradient Now that we know the location of the point, we can go ahead and
calculate the gradient using either (2.11) or (2.12) on page 18. For the latter
however, we need to determine AL, BL and CL, which is straightforward. If
the components of s are xs and ys, we simply have

– if xs = 0, then AL = 1 and BL = 0 (vertical segment),

– if ys = 0, then AL = 0 and BL = 1 (horizontal segment),

– else, AL = −ys/xs and BL = 1

The third parameter of the line is finally calculated using one of the points, say
S1 = (xS1

, yS1
). This would lead to CL = −ALxS1

−BLyS1
.

Note that the normalisation in (2.10b) on page 18 is important to ensure
perfect blending between the point– and line influence at the borders between
the different “zones”. The result from the technique described is demonstrated
in Figure 2.8 on the facing page.

It is important to mention that for the penalty box two small tweaks are
used. First, the segments only influence points outside of the box. Inside of it,
a point repulsor (that, in turn, only influences the inside) has been placed, to

2.6. MODIFICATIONS 27

Figure 2.8: Visual representation of the entire potential field, now using seg-
ments and a point repulsor to prevent an “illegal defender”. We have
also added another arbitrary segment for demonstration purposes.

push the robot out in case it finds itself inside the box. If the segments here
were double–sided, it would not be able to leave the box.11

Second, the end points of the top segment of the box are purposely not
having any influence. This is to prevent overly “high” corner points which
would result from the superposition of these end points with those of the side
segments of the box. Such overly high points would create a more wide spread
corners that would, in turn, hinder a robot from “sliding” around the corners
of the box when chasing the ball for instance.12

This concludes our preliminary modifications, and, in the broader sense,
our introduction to the NUbot players.

11 Of course, if the robot really is inside the box, it is removed as set by the rules. However,
our modification is meant to cover the case where the player is badly localised (i. e. he thinks
he is inside the box, but in fact is not), to prevent it from stepping any closer and potentially
really entering it.

12 The result of such an unnecessary superposition of potentials can be seen in the four
corners of the pitch, where the side lines add their respective influence (which, however, is
deemed acceptable).

C H A P T E R 3

Algorithm design

We will describe our approach to the decision

making for passing, in what direction to actually

kick the ball, and how sender and receiver cooperate

in that case.

3.1 Introduction

Having presented the hardware and software of the NUbots, along with some
modifications to the existing Extended Kalman Filter to improve ball position
and velocity estimation, we will now focus on the main topic of this thesis.
This chapter lays out our approach to the decision making and execution of
deliberate passes.

Before presenting our algorithm, let us quickly consider an introductory
example to highlight some of the more general problems involved. In the situ-
ation shown in Figure 3.1 on the next page, we can tell immediately: “Yes, this
would be a good pass.” This statement is easy to make for us, as on the one
hand we have a good and very precise overview of the entire game situation
from our “bird’s eye view”, and on the other hand we have of our experience,
intelligence and intuition.

Our robotic soccer players however — with their camera about 15 cm above
the ground and only about 50◦ of horizontal field of view, not to mention the
low resolution and poor quality pictures delivered by their camera — do not
have this overview, thus have to rely on and trust their own localisation and
that of their team mates. Also, they do not possess any real “experience” in
soccer playing and cannot predict the behaviour of the other players as a human
player can. So, how can we establish rules for judging the quality of a pass?
How can we you determine the ideal bearing for kicking the ball?

In the preparation of this thesis, two approaches have been considered.
They were to either use a one– or two–dimensional potential field to respec-
tively determine ideal bearings for passing, or ideal locations for the ball to go.
Concerning the 2D approach, we had the following problem. Contrary to the
potential field we encountered in the last chapter where we only needed to cal-
culate the local gradient, the situation here would require finding a global max-
imum. As such a task would require much more involved and extensive com-
putations, it was soon decided that we should rather take the one–dimensional
approach.

Once the decision for passing has been made, it needs to be executed.
Surely, this should involve some form of communication and coordination be-

29

30 CHAPTER 3. ALGORITHM DESIGN

Has got
the ball

Figure 3.1: Red Team is attacking blue goal. Passing the ball as indicated by
the arrow would certainly be advantageous in this situation.

tween sender and receiver.1 The sender needs to line up the shot, and the
receiver should get himself in a position to receive the pass. Ideally, the knowl-
edge of the exact moment of the kick should also be incorporated in the receivers
Extended Kalman Filter to improve its ball position and velocity estimation.

So let us start off with describing the decision making process, first dis-
cussing the main ideas, then its mathematical transcription and finally the
resulting overall algorithm (its implementation in being shown in the
Appendix). The last section then focusses on the communication and further
modification to the Extended Kalman Filter.

3.2 Main concept

In order to come up with an effective and robust algorithm for the decision
making, our questions from the introduction need answering. We should come
up with a set of rules which will favour passing in one particular direction, but
also prevent useless or too dangerous passes. For that, we are considering the
following one dimensional potential field.

3.2.1 Horizon scanning

Our general approach is based on considering the full horizon around the player.
The ai.Bo®s are physically not strong enough to kick the ball off the ground in a

1 From now on well shall call sender the player currently in possession of the ball (and
about to potentially play a pass), receiver his team mate that is intended to receive the
(potential) pass.

3.2. MAIN CONCEPT 31

controlled manner (in order to intentionally kick over other players). So, when
it comes to passing, our NUbots have only one option — that is to kick the ball
in one particular direction besides maybe first dodging around a defender.

With the quality of the localisation as well as the performance and preci-
sion of the kick2 we use, it is sufficient to consider a resolution of one degree,
resulting in 360 possible kicking directions.

3.2.2 What makes a good pass

Passing — from the sender point of view — ultimately means kicking the ball
into one particular direction. This action however only results in a “pass” when
the receiver picks the ball up and carries on with it from that point. It is a
“good” pass, when a strategical advantage has been gained, such as gaining
space, clearing defenders or getting a better angle for shooting at the goal.

As the robot about to make the pass cannot predict the behaviour of its
team mate (as a human soccer player of course does), he will have to base his
decision uniquely on a “snapshot” of the positions of himself, his team mates
and opponents.

Three fundamental criteria for a good pass are obvious:

– the pass should go precisely to or in front of a team player,

– the receiver must not be hidden behind an opponent player and

– the pass should never go backwards, or cross the field in front of your
own goal.3

More elaborate criteria would be, that the receiver should

– not be too far away from the sender, but also not too close,

– be close to the goal,

– be clear from opponent players.

So how can these “linguistic rules” be translated into an algorithm that
can be implemented in a normal programming language to run as fast and as
efficient as possible?

3.2.3 Fuzzy logic

The term linguistic rules usually invites fuzzy logic to the scene. The concepts
of this emerging area in modern information processing technologies were first
formally introduced by Latfi A. Zadeh in his seminal paper [19], and later
extended in [20]. Since then, fuzzy logic has become one of the mainstays in
modern knowledge based systems, with many real–world applications ranging
from home appliances to industrial installations. The interested reader may be

2 Note that we only use one “standard” kick, which kicks the ball straight ahead. The
particular kick we are using has been chosen from the large repertoire of kicks because is the
most reliable kick and has an adequate speed of usually around 40− 60 cm/s.

3 At least in our RoboCup philosophy. The low levels skills are still to unreliable and
the probability of an opponent intercepting such a “pass” and obtaining a good goal scoring
opportunity is too high.

32 CHAPTER 3. ALGORITHM DESIGN

referred to the recent text [15] for some broad and in–depth background on the
topic.

Fuzzy sets, which are the entities at the heart of fuzzy logic, try to capture
or represent objects or properties with uncertain, “fluid” boundaries — such
as linguistic notions. A classical example would be the notion of “size”, for
instance. When can a person be considered “tall”? If it is taller than two
metres, or 1.90 m or 1.80 m? It is obviously hard to make a (meaningful)
binary decision between being tall and not being tall.

The approach we shall take below — whilst not directly following fuzzy
logic paradigms — does embrace related concepts in trying to mathematically
describe some of the heuristics involved in passing.

3.3 Mathematical transcription

Having discussed important characteristics of a good pass, we shall now see
how these criteria are actually written down or “translated” into mathematical
expressions so that we can deal with them on an algorithmic level. Let us start
off with a few remarks concerning the potential field itself, to then discuss the
different objects that influence it.

3.3.1 Potential field

The field encountered here is quite different from the one we saw in the last
chapter. On the one hand it is only a one–dimensional potential field — cor-
responding to the full 360 degrees of horizon line around the sender. On the
other, the potential in one point tries to relate to the quality of a possible pass
in that direction, thus some form of desirability (in the other case we were
rather focussing on the gradient, not the potentials themselves).

Potentials

Let us define a positive potential4 at some bearing to be a “good” direction
to play the ball in (i. e. a direction, that would quite likely result in a “good”
pass). A negative potential, conversely, would correspond to a disadvantage to
the team if the ball was kicked that way.

The overall potential field is the cumulative effect of the different elements
that influence the field, mathematically speaking the superposition of the effects
of each attractor. So what objects influence the potential or attraction of one
particular direction?

Sources

In our set–up, we distinguish between three classes of objects that can produce
some form of attraction. These classes are

– team mates,

– opponents and

4 From now on we shall also speak of “attraction” or “desirability”.

3.3. MATHEMATICAL TRANSCRIPTION 33

– “other”.

The objects in these classes differ mainly in two ways: the general sign of the
attraction (positive or negative) and their clipping behaviour as describe below.

Team mates Obviously, the major sources of attraction should be team
mates. If they are hidden behind an opponent player, their attraction should
be clipped (hence ignored). However, two team mates that are in line with the
sender should be allowed to superpose or double up their amounts of attraction.

Opponents A disastrous action would be to play the ball in the hands (paws)
of an opponent player, so these are our big sources of repulsion. Two opponents
behind each other should add up their negative influence, but an opponent hid-
den behind a team mate should not have any negative impact in the concerned
bearings.

Other This class of objects only contains one object at the moment, but this
can, of course, be extended in feature work if necessary. We call this object
the goal attractor, with field coordinates GA = (210, 0). This point exerts a
positive attraction, that cannot be clipped by any other object. It serves the
purpose of attracting or favouring passes closer to the goal by giving a small
additional attraction to bearings close to the goal. That point is not located
directly on the goal line but rather 60 cm in front of it in order to produce
good cross passes from the sides.

Clipping

As clipping effects are very important in our application here, let us repeat the
clipping rules using Table 3.1 below. The objects shown there are supposed to
be in line with the sender, the second object farther away from the sender than
the first object, thus being hidden behind the first object.

1st object 2nd object Clipping?

Sender −→ Team mate −→ Team mate −→ ×
Sender −→ Team mate −→ Opponent −→ √

Sender −→ Team mate −→ Goal attr. −→ ×
Sender −→ Opponent −→ Team mate −→ √

Sender −→ Opponent −→ Opponent −→ ×
Sender −→ Opponent −→ Goal attr. −→ ×
Sender −→ Goal attr. −→ Team mate −→ ×
Sender −→ Goal attr. −→ Opponent −→ ×

Table 3.1: Clipping rules: The goal attractor and objects of same type are
never clipped.

If an object is being clipped, it’s core potential and sloped parts (as de-
scribed in Definition 3.2 on page 36) will have no influence on the overall
potential in the range of bearings of the core of the first object.

34 CHAPTER 3. ALGORITHM DESIGN

Region of interest

Even though we calculate the potential along the entire horizon around the
player, it is clear that passes should only be considered within in a limited
portion or region of the horizon, usually near the direction of the goal. We call
this the region of interest. It can also be seen as a fail safe, that, for instance,
no pass would ever go backwards (possibly in the direction of the own goal).

For that, we came up with a simple set of rules that determine our region
of interest. Generally, we distinguish between two situations.

(i) The first one is a defensive situation, that is, when the sender is in the
first quarter of the field (x < −135). Although passes can be useful
here for clearing the ball, we do not want any passes crossing the field
in front of the goal (again, as a safety precaution). If the ball is close
to the x–axis of the field, passes should only go outwards (i. e. towards
the sidelines). Only if the player is further out (towards the sidelines) he
should be allowed to play passes going up the field.

We decided to have the region cover a constant ±36◦ to both sides of its
centre, which moves from ±90◦ (i. e. pointing outwards) to 0◦ (pointing
up the field) as y goes from 0 to ±180.

(ii) If we are in the other three quarters of the field (x ≥ −135), passes
should generally go in the rough direction of the opponent goal. For
that reason, we centre the region of interest on the bearing of the goal
attractor GA. Also, as we approach the goal, we should “open up” the
region of interest, i. e. consider a larger area of bearings for passing — we
do this by changing the extent of the region of interest depending on the
players x–position on the field.

More precisely, if the robot is in his own half (i. e. x < 0), the region of
interest extends ±36◦ around the goal attractor bearing. If the robot is
in the offensive half, the range increases continuously from ±36◦ to ±72◦

as x goes from 0 to 270.

Let us put this down again more formally:

Definition 3.1 (region of interest)
The region of interest R is the set of angles in the direction of which (and

only which) passes are allowed to be played. When x ≥ 135, it is symmet-
ric around the bearing of the goal attractor GA = (210, 0), otherwise changes
depending only on y. These two cases are precisely:

(i) x <135:

R(x, y) =

{

ϑ ∈ [0, 360[
∣

∣

∣ 54− y

2
≤ ϑ ≤ 126− y

2

}

, if y ≥ 0

{

ϑ ∈ [0, 360[
∣

∣

∣ − 126− y

2
≤ ϑ ≤ −54− y

2

}

, otherwise

(ii) x ≥ 135:

R(x, y) =
{

ϑ ∈ [0, 360[
∣

∣

∣ ϑGA −∆ϑR ≤ ϑ ≤ ϑGA +∆ϑR

}

3.3. MATHEMATICAL TRANSCRIPTION 35

where

ϑGA =

tan−1 −y

210− x
, if x 6= 210

− 90 · sign y, otherwise

and

∆ϑR =

36, if x < 0

36 · (1 + x/270), otherwise

All angles and operations involved are to be taken modulo 360.

The different cases and the region of interest’s behaviour is demonstrated
and commented on in the next chapter, that is in Subsection 4.2.1 on page 45.
As mentioned above, it plays an important role in the final passing decision,
as we shall see next.

Pass trigger and direction

There are two conditions that have to be fulfilled for a pass to be triggered.

(i) The sender must not be inside the opponent’s penalty box,

(ii) the potential has to exceed a certain threshold value inside the region of
interest.

If both conditions are satisfied, a pass will be played in the direction of the
maximum potential (inside the region of interest). The difference between that
maximum and the current threshold value is taken to be a measure of quality of
the pass. The larger the value, the better. With a modification to the current
goal shooting algorithm5 we could use this quality measure to balance between
playing the pass or rather taking a direct shot at the goal and potentially
scoring right away without the danger of giving away the ball in the course of
passing.

Clearly, the threshold value is an important parameter in our algorithm, as
it has a very strong and direct influence on the amount of passes that will be
attempted in the game. Its value, called τ , depends on the sender position on
the field. If the sender is further away than 120 cm for the goal attractor point
GA, it has a constant value of τ0. However, as dGA is smaller than 120 and
decreases further, the threshold is increased continuously until it is 50% higher
than its nominal value. So we have

τ(dGA) =

τ0, if dGA > 120

τ0
120−dGA

120 · 2 + τ0 otherwise

This said, let us now take a closer look at how exactly the objects influence
our potential field.

5 That is, calculate some measure of confidence for scoring a goal, using for instance the
current distance from the goal or the width of the largest gap between keeper and goal post.

36 CHAPTER 3. ALGORITHM DESIGN

3.3.2 Attractors

An attractor6 generally is an object that will contribute some positive (or nega-
tive) potential to the field, thus favouring (or disfavouring) a particular region
of the horizon.

For reasons of flexibility, but also computational efficiency, we chose the fol-
lowing, simple shape for our attractors. In our example we use a positive height
(resulting in positive attractor), but repulsors have the exact same properties.

Characteristic values

Let us now formally define an attractor together with all its characteristic
values.

Definition 3.2 (Attractor)
As shown in Figure 3.2 below, the potential pA(ϑ), for ϑ ∈ [0, 360[, created

by an attractor A(c, h, r, s, γ) is of trapezoidal shape.

The potential it creates is symmetric (with the angle being modulo 360)
about its centre bearing c. The core of the object’s potential is a flat top at
height h with a certain radius r, the width of the flat part to both sides of the
centre.

The sides then slope down linearly with a finite slope s in the so–called
sloped part until they reach the cut–off value γ, where the potential “bottoms
out” flat again, called the cut–off part.

There are two kinds of attractors. Depending on the sign of h they are called
positive attractors (or just attractors) or negative attractors (or repulsor).

Bearing

A
tt

ra
ct

io
n

G
G
G
G
G
G
A

0
◦

45
◦

90
◦

135
◦

180
◦

225
◦

270
◦

315
◦

360
◦

−50

0

50

100

rc

γ

h

s

l

Figure 3.2: Illustration for a positive attractor, showing the characteristic
values: centre c, height h, radius r, slope s and cut–off γ. The auxiliary
variable l is defined below (3.2).

Again, we can get a negative attractor (i. e. a repulsor) by changing the sign
of h, s and γ. For that reason, the term “height” should be understood more
as a “maximum (minimum) potential”, or “maximum attraction (repulsion)”.

6 Note that there is always a certain ambiguity between “attractor” in the general sense,
where it could have a positive or negative sign, and the “attractor” in the narrow sense, being
a strictly attractive object. It should, however, be clear from the context which one is meant.

3.3. MATHEMATICAL TRANSCRIPTION 37

Choice of parameters

As we have seen, an attractor is completely described by its five parameters. A
good choice of these parameters is to the performance of the overall algorithm
and they should depend on the relative position (distance and bearing) of the
object creating it.

The power of our potential field approach relies not only on the strong
attractor or repulsor cores. The small contributions created by the cut–off
parts outside the main bearing of an object (such as the goal attractor, or the
choice of cut–off values) also play a key role in ultimately favouring the “best”
direction for passing possible in a particular situation.

The actual numerical values for the parameters of the following functions
can be found in Appendix B.

Centre The centre of an attractor should obviously lay in the direction of
the object it is related to. However, concerning team mates for example, one
could also try to shift it a bit relative to the player’s real bearing based on his
own heading as the robots have certainly more influence on the area in front
of them than behind their back.

Height We have got three different formulas for the potential in the core of
the object — one formula per object class, that is team mates, opponents and
the goal attractor respectively:

hT(d) =

0, if d ≤ dA or d ≥ dB

hT,0 · d−dA

dM−dA
, if d > dA and d < dM

hT,0, if d ≥ dM and d ≤ dN

hT,0 · dB−d
dB−dN

, if d > dN and d < dB

hO(d) = hO,0 ·
d

650
+ hO,0

hGA(d) = hGA,0

These functions are shown in Figure 3.3 on the following page. The number
650 corresponds to the length of the diagonal of the entire field (≈ 649.0 cm),
the longest distance that should be encountered in the game.

Concerning the choice of the shape of the functions, the idea was that passes
should not be attempted when the receiver is too close, or too far away. With
two “transitional” regions between dA and dM as well as dN and dB, the main
distance for a receiver to attract a pass lays between dM and dN.

Opponents however have a slightly decaying repulsion as distance grows —
the closer they are, the more dangerous they are. The goal attractor has a
constant core height, as it should attract passes independent of how far away
it is.

Radius The core radius for opponents and team mates is specified in centime-
tres locally to both side of the robot (for instance rT,0 = 20 cm for team mates).
Depending on the distance to the object, this radius is then “translated” into

38 CHAPTER 3. ALGORITHM DESIGN

da dm dn db

Object distance in [cm] GGGGGGA

M
ax

im
u
m

p
ot

en
ti

al
cr

ea
te

d
G
G
G
G
G
G
A

hT

hO

hGA

0 50 100 150 200 250 300 350 400 450 500 550 600 650
-60

-30

0

30

60

90

120

150

Figure 3.3: Maximum potential created by an object as a function of its
distance. Objects are team mates, opponents and the goal attractor.

a corresponding angle by using

rT(d) = tan−1
(rT,0

d

)

rO(d) = tan−1
(rO,0

d

)

rGA(d) = rGA,0

A non–zero radius allows on the one hand to “cover” some of the uncertainty
in localisation of the other objects (robots),7 and on the other hand to simulate
the “domain of influence” of the robot, i. e. how far it can reach if it suddenly
dives, for instance.

The goal attractor however has presently got a zero radius to make it a very
precise attracting bearing.

Slope The slopes also play an important role on how local or broad an influ-
ence the object has. These are our simple equations for the sloping parts of
the trapezoidal potential funciton:

sT(d) = sT,0 ·
1

d
sO(d) = sO,0 · d

sGA(d) = sGA,0

For team mates, the slopes should become steeper the closer the robot is
in order to limit its influence. This is particularly important in the following

7 In the future, one could make the radius change according to the confidence of the
respective position estimations to better capture the effects of good — or bad — localisation.

3.3. MATHEMATICAL TRANSCRIPTION 39

situation. Let us assume we have team mate A standing relatively close and
at a good passing distance. Another one, B, is also close to it in terms of
bearing, but behind it in distance. With B having a broader slope, he will
add some potential to A, who should then attract the pass — this is what we
want. However, if A had a broader slope he might “leak” enough potential to
B, who is further back, triggering a pass in that direction, which would be less
desirable in this situation.

Opponents in turn are considered more dangerous when they are close (as
their behaviour is completely unpredictable) and the effects of a poor position
estimation of opponents are also more pronounced, so their (negative) influence
should broaden the closer they are.

The goal attractor has a constant slope, again, as the distance to it is
considered irrelevant.

Cut–off These values are constant, and of opposite signs with the respective
maximum heights: for team mates, the cut–off value is slightly negative in order
to disfavour directions that are well outside of any team mate. Conversely,
bearings that are clear from any opponent player should be slightly attractive.
This will have an important fine tuning effect as we shall see later.

Calculation of the potential

Once all the parameters are set for an object, we can calculate the potential
it creates. For some attractor A(c, h, r, s, γ) and some bearing ϑ (with all
operations again being modulo 360), we simply have

pA(ϑ) =

h, if |ϑ− c| ≤ r

γ, if |ϑ− c| ≥ l

h+ s ·
(

|ϑ− c| − r
)

, otherwise

(3.2)

where l = (γ − h)/s + r would be the distance between centre and the point
where the slope is cut off.

As mentioned earlier, choosing this simple, piecewise linear form allows for
a relatively inexpensive computation but still giving us all the flexibility and
versatility we need.

3.3.3 Implementation

With these definitions and comments made we can now look at the implemen-
tation of our concept. We have moved the source code of the python function
check_for_pass() into Appendix B on page 73. The listing is accompanied
by comments on how different steps of the algorithm are implemented, the
main focus laying on efficiency and computational inexpensiveness.

This very function is run on the robot every time it has successfully grabbed
the ball. If the decision is made to pass the ball, the robot has about two
seconds to execute the following actions.

40 CHAPTER 3. ALGORITHM DESIGN

3.4 Pass execution

We shall close this chapter by looking at the execution of the pass and the
involved cooperation and communication between sender and receiver.

3.4.1 Lining up

When a pass is to be played it is crucial that the ball is kicked as precisely
as possible along the suggested bearing. In terms of execution, the robot will
have to turn to that bearing initially based purely on its localisation.

Poor localisation

Let us give an example situation. If, for instance, a pass should be played at
35◦ and the sender thinks his own heading is −1◦, he will have to turn +36◦

before kicking the ball. However, if the robot is badly localised (i. e. his real
heading is, say, −17◦) such an “open loop” or “feedbackless” turning would
result in an offset of, in this case, 16◦ — which could lead to kicking the ball
directly in the hands of an opponent player!

Obviously, it would be much better if the robot could “see” the receiver
and line up the shot based on this visual feedback. Luckily, there is already a
robot recognition algorithm in the NUbot code base, [9, 17]. It was developed
by K. Hong, but its use in the game code was, at the time, only limited to
dodging opponent players. Being relatively expensive in processing time, error
prone in reporting distances and as dodging could be done more easily (and
reliably) using the infra—red sensors, it was turned off quite soon after the
2005 RoboCup.

However, this useful piece of code is given a new application now — we use
it to visually scan for a team mate in the vicinity of the passing bearing. If
a team mate is spotted close to the passing bearing, we assume it to be the
receiver of the pass, and then use it to visually line up the shot. That way, we
are much more independent of potentially poor localisation.

Robot detection

There are, however, several issues involved in “seeing robots” — most of them
are, again, due to the poor quality of the camera. We do not want to go into
the details of the code (again, see [9] for more details), but let us make the
following comments.

Robot detection is based on the colour blobs from the robot uniforms (as
opposed to the black and white pattern or the shapes we humans probably use
most when “seeing” an ai.Bo®), so it is important that the camera captures as

much of the uniform as possible.8 Due to shadowing under the head, it is very
hard to see a robot that is facing us straight. The more it is turned sideways,
the more we see of the side patch which is less shadowed, and the more likely
the algorithm will “catch” it. This is shown in Figure 3.4 on the facing page, a
picture taken with another NUbot.

8 As the blue uniforms for the robots have a very dark colour, which is much harder to
classify than the relatively bright red, we use for all our experiments red uniforms, that is
“we” are Red Team, and the opposition is Blue Team.

3.4. PASS EXECUTION 41

Figure 3.4: Observe the shadowing on the front patch of the left robot com-
pared to the red on the side patch of the second. The third robot wears
a blue uniform. Picture taken directly from another robot.

Another issue is related to the tuning of the colour look–up table which
is currently only loaded when the robot is boots up. In the currently imple-
mented colour reduction technique, a separation has to take place between
orange, “red–orange” and red, confronting us with a certain trade–off. If the
table is configured more aggressively towards red (i. e. the soft–colour “red–
orange” capture more shades of red), robot detection will work much better
and the chance of actually “seeing” the receiver is much higher. The drawback
is that red robots will also be frequently mistaken for the ball which confuses
the Kalman Filter and ultimately deteriorates the ball handling capabilities in
general.

However, if we include more orange, the ball is seen more reliably, but red
robots will be picked up only in rare cases. Ideally, it should be made possible
to change between two tables “on the fly”, i. e. use one table in normal game
mode, and another one (with more reds) when lining up a pass.

In any case, we need the receiving robot to turn sideways while the sender
is lining up the shot. The required communication for this will be explained in
the next section.

3.4.2 Communication

In order to have more reliable passes (or, more precisely, to have the ball kicked
along the exact desired bearing) we want to use visual tracking for lining up.

42 CHAPTER 3. ALGORITHM DESIGN

This requires the receiving robot to turn sideways so that a good and non–
shadowed portion of his uniform can be seen. Also, once the ball has been
kicked, we have got some additional information about it (its rough bearing
and velocity), which can be used in a “manual” update to the Extended Kalman
Filter in order to improve the ball position and velocity estimation.

Broadcasting

For the required communication, we extended the communication that is tak-
ing place between the robots. Currently, each robot only broadcasts its own
estimates of ball position, own position, variances on both and a behaviour
message (such as “ball grabbed”, “ball being kicked”, etc.).

To facilitate and speed up implementation, we simply added another integer
value to an existing TCP packet, which is sent out every five frames (i. e. about
every 166 ms). It contains the actual message along with sender and receiver
id, by using the following encoding:

– The hundreds correspond to the sending robot id,

– the tens to the intended receiver (addressee),

– the ones to the actual message.

Note that the goal keeper (he always has id 0) is never considered for pass-
ing, as trying to pass to him would be too dangerous and have no real advan-
tage. For instance, a typical message would be:

2 3 1

⇓
Sender

⇓
Receiver

⇓
Message

We include both sender and receiver id in the message so that the message
can be broadcast without targeting anyone in specific (at the TCP packet level),
which facilitated the implementation. Each robot that receives the message
then decides whether it was meant for it or not and reacts appropriately.

Messages

Currently, we have three defined messages. The first two messages (id 1 re-
spectively 2) mean, loosely speaking: “Turn left [resp. right] so that I can see
you”, relating to the visual lining up of the kick.

The third message (id 3) stands for: “I’ve just kicked the ball”, which will
allow for an improved ball position and velocity estimation.

Lining up related messages Let us return to our example above. There,
player 2 is sending message 1 to player 3, and thus tells him to turn toward a
certain angle left of the imaginary line connecting the two robots, as depicted

3.4. PASS EXECUTION 43

Robot 2

Robot 3

60
◦

231

Figure 3.5: Robot 2 sending message 1 to robot 3, which turns accordingly.

in Figure 3.5. This angle is currently set to 60◦, a compromise between fully
facing the sender / ball (for more reliable grabbing especially if the sender is
rather close, but making it hard to be tracked), and exposing more of the side
patch of the uniform for higher “visibility” (which allows more precise kicking,
but the receiver may not be able to turn back in fast enough to catch the ball
once it has been kicked).

The decision, whether the receiving robot should turn left or right is made
by the sender depending on the pass bearing relative to the receiver in case
of a through pass (i. e. when the ball is not kicked directly at the team mate,
but slightly off to one side).9 If the pass is to go straight to the receiver, the
receiver shall turn either left or right, whichever is the shortest turn from his
current heading.

When a player receives the message to turn left (or right) relative to some
sending robot, he calculates the bearing of that robot, and turns accordingly
on the spot. The sender starts broadcasting the turning message as soon as the
passing algorithm has finished calculating bearing and receiver, and continues
to broadcast it until he has kicked the ball. He then sends out message 3 with
the next TCP packet available (but only once).

Using this technique, the receiver is “locked” at his current position (based
on which the passing decision has been made), turning to — and holding —
the angle relative to the sender. When the ball is finally kicked, (more precisely
when he does not receive message 1 or 2 any more), he is “released” from this
forced sideways angle and (back in the standard ball chasing mode) turns back
to face the ball. However, it updates it’s Extended Kalman Filter as described
in the following.

Ball kicked message By using a specific kick, we have a rough idea of the
velocity of the ball (as mentioned earlier, the ball usually reaches 40− 60 cm/s
after the kick), and as it is meant to travel along a certain bearing, we can

9 It is easy to see that through passes will only occur if the core radius for team mates
rT,0 is non–zero.

44 CHAPTER 3. ALGORITHM DESIGN

include that information in the Extended Kalman Filter, similar to the odom-
etry update described on page 12. This is done the instant when the player
receives message 3.

Normally, we assume that the change of the ball’s velocity is negligible, so
the sixth and seventh component of the vector added to x̂k−1 in (2.2) are zero.
When the receiver gets the message that the ball has just been kicked (hopefully
very close towards him), these two components are set to 50 · cos(π + ϑsender)
respectively 50 · sin(π + ϑsender) for that particular frame, where sender is, of
course, the relative bearing of the sender. Also, we drastically increase the
model covariances for the ball velocity in that frame, to put a strong emphasis
on the measurements, away from the model (which does not include kicks).

This concludes this chapter on algorithm design. We shall now see, how
the passing algorithm performs in simulation, and how it works integrated in
the current NUbot code along with the modifications to the communications,
behaviour and Extended Kalman Filter.

C H A P T E R 4

Demonstration

We demonstrate our algorithm and present results

from simulations in Matlab, as well as from

practical tests with the robots.

4.1 Introduction

Now that we have described the concepts and approaches for its implementa-
tion, it is time to demonstrate the features of our passing algorithm and show
some results from actual practical tests with the NUbots.

The development and testing of the passing decision algorithm was done
initially using Matlab. The powerful debugging tools as well as the simple yet
flexible graphic capabilities of Matlab made it an ideal tool for testing and
fine tuning the many parameters involved. It was only in a second step, that
the algorithm was ported to and tied into the existing NUbot software.

Obviously, it will be hard to show some real game moves on paper, as
the dynamic development of the game can only be captured well using video.
However, we shall attempt to display some laboratory results using a series of
pictures taken from a video.

So let us first demonstrate the key functionality of the decision making
algorithm and later review some real game moves from the actual soccer pitch.

4.2 Matlab Simulation

We shall start by showing how the region of interest changes along the field.

4.2.1 Region of interest

As we have laid out in Definition 3.1 on page 34, this is the only section of the
horizon within which passes are allowed to be played. It changes depending on
the sender’s position on the field.

45

46 CHAPTER 4. DEMONSTRATION

Figure 4.1: Region of interest in the last quarter of the field.

Defence

We wanted the region of interest to always face away from the x–axis, as a
pass crossing the field in front of your own goal would bear too much risk of an
opponent catching the ball and having an ideal position to take a direct shot
at the goal.

The dotted white lines indicate the different areas on the field involved,
that is one at x = 135 showing where the defensive mode is activated and one
in the middle that separates left and right half of the field (where the region
of interest is to face either towards the left or right side line).

To visualise the region of interest in Figure 4.1 above, we overlaid a semi
transparent “wedge” on the little radar like gauges (polar plots) which also show
the potential around the horizon (blue line) together with the threshold value
(magenta line).1

As desired, near the sides of the field passes are allowed to go up–field, but
near the centre only sideways going passes are possible.

1 Please note that the goal attractor’s potential is not taken into account in the plots
here.

4.2. MATLAB SIMULATION 47

Figure 4.2: Region of interest around midfield.

Midfield

When the game moves towards the midfield, the region of interest is to be
centred on the bearing of the goal attractor (indicated by the yellow dot).

In the defensive half, the region of interest covers a total of 72◦. However,
once the player moves beyond the half way line, it widens up, as can be seen
when comparing the bottom left and bottom right gauge in Figure 4.2 above

Being still too far away from the goal attractor, the threshold remains at
its constant default value for all four sample points.

48 CHAPTER 4. DEMONSTRATION

Figure 4.3: Region of interest in the offensive third of the field.

Offence

Especially in the offensive third of the field passes can have a tremendous
impact on the team’s performance. In real soccer, cross passes2 play a key role
in attacks — this is similar here (but with the important difference that we
cannot kick the ball off the ground nor follow up with a header).

The desired cross pass feature is the main reason why the goal attractor is
located slightly in front of the goal, not directly on the goal line. That way,
the region of interest is opened far enough to allow for cross passes as well as
“escape” passes, as can be seen in the top right gauge of Figure 4.3.

Being close to the goal attractor, we can see how the threshold value at the
sample point in the middle is increased.

With the region of interest behaving as desired, we shall now demonstrate
clipping effects.

2 That is passes played from the corners inwards in front of the opponent goal. They are
an important tactical move as they allow to bring the ball back into play when an attacker
was boxed into a corner, can effectively counter defensive patterns that are specific to just
one side of the field or force defenders to turn rapidly by large angles.

4.2. MATLAB SIMULATION 49

Figure 4.4: Example situation to show clipping effects.

4.2.2 Clipping effects

As we have mentioned in Subsection 3.3.1 on page 33, objects hidden behind
others should, in certain circumstances, have no effect on the object in front
of them. For instance, an opponent player in line, but half a meter behind a
team mate, should have no serious impact on the passing decision whether to
pass to that particular team mate.

To demonstrate how our algorithm takes care of these clipping phenomena
(more details in about the implementation of that feature can be found on
page 76) we have set up a testing situation in Figure 4.4 above. Again, the
blue line corresponds to the potential along the horizon, scaled in the indicated
polar grid.

To give a better look “behind the scenes”, we also created Figure 4.5. There,
the upper plot shows each object’s individual contributions to the potential field
along the 360 degrees of horizon (for the same situation as above). The lower
plot displays the resulting overall potential.

Looking at the first subplot we can see the goal attractor’s wide spread
influence, as well as a number of “high rising” positive peaks. These correspond,
of course, to the team mates. When comparing this to the lower plot, we can
see that opponent player 5 has only little influence on the potential created
by player 2 — as player 5 is hidden behind him. Conversely, player 6 removes
most of the positive influence of player 3, as the opponent player, this time,
occludes the team mate’s influence.

Also, observe how only the cores of the potentials are clipped, not the sloped
or cut–off parts of the potential. This explains the little spikes in the overall
potential near player 2 and player 6.

50 CHAPTER 4. DEMONSTRATION

7

2

6

3

5

8

4

In
d
iv

id
u
a
l
p
o
te

n
ti

a
ls

o
f
o
b
je

c
ts

GG
G
G
G
G
G
G
G
GA

O
v
e
ra

ll
p
o
te

n
ti

a
l

GG
G
G
G
G
G
G
G
GA

Bearing [degrees]

0 30 60 90 120 150 180 210 240 270 300 330 360

0 30 60 90 120 150 180 210 240 270 300 330 360

-100

-50

0

50

100

150

200

-50

0

50

100

150

Figure 4.5: Graphs for the individual and overall potentials for our example
situation.

As the potential exceeds the threshold at 17◦, which is inside the current
region of interest, a pass is triggered as indicated on the plots. Our Matlab

routine also highlights the player that the algorithm intends to be the receiver.
With these details mentioned, let us take a look at some realistic game

situations and discuss the potential field’s response to them.

4.2.3 Game situations

We shall now present four typical game situations to evaluate the suggestions
of our passing algorithm. The accompanying detailed plots for the potentials
have been moved to Section A.2 in Appendix A.

4.2. MATLAB SIMULATION 51

Figure 4.6: The same situation as in Figure 3.1.

Situation 1 — Offence, cross pass

Let us begin with the situation introduced in Figure 3.1 on page 30. The player
currently in possession of the ball cannot take a direct shot at the goal as he
is blocked by opposition player 7. Even if he dodged around the player, he
would still have a bad angle for a good shot. The other players are rushing
back to defend their goal, but team mate 3 is free in the middle of the field. As
discussed earlier, we would like the player corned on the bottom right to play
a cross to his team mate in front of the goal.

As desired, the algorithm suggests the pass towards player 3. It is the goal
attractors slope that creates the unique maximum, which also lays closest to
the goal (among the bearings of the team mates core potential).

That way, the resulting pass will be a nice cross with a certain through pass
character, as the ball is not kicked directly at, but in front of the receiver.

52 CHAPTER 4. DEMONSTRATION

Figure 4.7: A simulated offensive situation.

Situation 2 — Offence, forward pass

Another offensive situation is shown in Figure 4.7 above. However, this time
we made it artificially symmetric: sender and players 4, 6 and 7 are exactly
in the middle of the field; players 2 and 3 in turn are at the same height and
equal distance from the middle line. We chose this setting to highlight the fine
tuning effects of the cut–off parts of the potentials, as both players 2 and 3
attract a pass here (the potential exceeds the threshold near both players).

Observe player 5. He is mostly hidden behind player 2, thus has not much
effect on the latter. However, it is his cut–off part that favours player 3 for
passing — whom we would prefer to be the receiver here as he is “more clear”
of opponents than player 2.

Hence, even in mostly (and unrealistically) symmetric situations, our al-
gorithm prefers one player over another based on how far he is away from
opponent players.

4.2. MATLAB SIMULATION 53

Figure 4.8: A simulated midfield situation.

Situation 3 — Midfield, forward pass

Let us move further towards midfield, as shown in Figure 4.8 above. For a
change, there is no pass suggested in this situation here.

Player 3 is hidden behind an opponent player and player 2 is too far away
to be considered for passing.

54 CHAPTER 4. DEMONSTRATION

Figure 4.9: A simulated defensive situation.

Situation 4 — Defence, clearing pass

This is another typical situation in RoboCup games. It could result from a
successful dive by the keeper, who just managed to hold a shot at the goal by
player 6 for instance.

The player currently in possession of the ball chased after it and should now
play a clearing pass. Looking at the potentials alone, player 2 would attract a
pass in this situation. As we are in the last quarter of the field, however, the
region of interest does not allow by design any passing in that direction. This
restriction is particularly useful here, as otherwise a pass to player 2 may cause
the ball to go dangerously close to opponents.

4.3 Practice

Let us now discuss a few results from real life test, i. e. with the robots on the
field.

4.3.1 Practical problems

There are a number of issues to be mentioned first. In the simulations, for
instance, we know exactly where all the players are, from the own as well as
from the opposition. On the real pitch however, we have error prone localisation
of the sender as well as all the other players on the team. This imprecise or
bad localisation will, of course, have an impact on the passing decision as well
as the execution of the pass. To a certain degree, our implementation can cope
with these uncertainties by using non–zero core radii on the one hand (which
can be interpreted as an area where the receiver could be as compared to a

4.3. PRACTICE 55

precise spot), and, on the other, using our flexible visual tracking (flexible as
it allows to track the receiver even if he is not seen exactly where is expected
to be seen).

Another major problem is, so far, that in real game situations we have no in-
formation whatsoever about the opponents. In the future, robot detection will
have to be improved to the point where it can pick up robots from both teams
in a much more reliable way than currently available. Once this is available,
our passing algorithm can be used in real game situations. For our testing, we
worked around the issue by placing switched off opponent robots (“bricks”) in
know positions and “hard coding” their positions into our algorithm.

Also, as mentioned earlier, we have to find a compromise in the colour
look–up table tuning between more reliable ball handling or better lining up
of passing kicks.

4.3.2 Offence

Our first set–up corresponds to a typical offensive situation. Figure 4.10 on the
following page displays eight frames of a video sequence taken from a typical
passing situation. Let us go through them one by one.

56 CHAPTER 4. DEMONSTRATION

1 2

3 4

5 6

7 8

Figure 4.10: A real offensive situation.

1 The robot on the bottom has just grabbed the ball and is executing
check_for_pass() to evaluate passing options.

2 The decision is made to pass the ball to the player in front of the goal. The
sender starts broadcasting his intention, and the receiver starts turning
sideways so that the sender can see him.

3 The sender has finished lining up the pass and executes the kick. At the
same time he broadcasts the kicking message.

4 As soon as the receiver stopped receiving the sender’s “turn so I can see
you” message, the receiver started turning back so that his body would
face the ball again. He also manually updated his Extended Kalman
Filter the instant he received the “ball kicked” message.

5 The ball is on the way and the receiver gets ready to grab the ball

6 He has caught the ball and, having evaluated passing options, decides to
take a shot at the goal.

4.3. PRACTICE 57

7 Having lined up the kick . . .

8 . . . he takes a shot.

This would be a typical situation occurring frequently in Four Legged
League games. If he did not attempt a pass, the player on the bottom of
the screen would either — with the current software and strategies — first
try to dodge the opponent player in front of him and then take a direct shot
at the goal, or he would let go of the ball potentially just handing it over to
the opponent. In case of shooting at the goal, the chances of scoring would
be rather slim as he is relatively far away from the goal (and with the three
second rule, he would not have enough time to close in much further).

However, playing a pass as shown here would not only have the advantage
of keeping the ball away from opponent players, but also hand over the ball to
a player that is in a much better position for scoring.

4.3.3 Defence

A different set–up would be the following rather defensive situation, similar to
the one discussed on page 54. As displayed in Figure 4.11 on the following
page, the goal keeper managed to hold a shot at the goal, knocking the ball off
to the side. This is what happened then step by step:

58 CHAPTER 4. DEMONSTRATION

1 2

3 4

5 6

7 8

Figure 4.11: A real defensive situation.

1 One of the defenders chases after the ball.

2 Having successfully grabbed the ball, he evaluates his passing options,
and decides to play a pass to the other player near the side line.

3 While turning towards the calculated passing bearing, the sender broad-
casts his intent, making the receiver stay put, but turn sideways for better
detectability.

4 The sender has seen his team mate and fine tunes his orientation.

5 Having received the message that the ball is kicked, the receiver updates
his Extended Kalman Filter and turns back, getting ready to take the
ball.

6 The ball is on the way and the receiver continuously corrects his position
to catch the ball.

7 Having grabbed the ball, the receiver evaluates his options . . .

4.3. PRACTICE 59

8 . . . and decides to run forward with the ball.

The current software would have “blindly” kicked the ball up the field,
roughly in the direction of the goal. As this would be done purely based on
localisation, chances are fairly high that he would either kick the ball out of
bounds, or that he would kick it too far infield, running the risk of just handing
it back to the opposition.

With these results we close this last chapter and move on to the Conclusion
of the thesis.

Conclusion

In the first Chapter, we introduced the robots used in the Four Legged League,
commenting on their information gathering and processing hardware as well
as their means to interact with the outside world. Selected rules from the
official rule set provide background information on the game process and the
particularities of this league.

The following chapter gave an overview of the existing software run on the
robots. We discussed the Vision, Localisation & World Modelling, Behaviour

and Locomotion modules which “transform” the ordinary ai.Bo® entertainment
robots into little soccer players. A modification was suggested to the potential
field, allowing for the creation of “potential segments” in addition to the already
implemented point and (infinite) line sources, which helps for a better and more
precise prevention of illegal defender penalties and gives more flexibility when
using the potential field for other purposes.

We also proposed a modification to the Extended Kalman Filter, improving
the ball position and velocity estimation which ultimately enhanced the ball
handling capabilities of the robots especially when attempting to grab the ball.

Chapter 3 was then concerned with the design of the actual passing algo-
rithm. We motivated our approach by contemplating key features and charac-
teristics of passes in general, and how this could be translated into an algorithm.
Inspired by concepts from fuzzy logic, we set up a one–dimensional potential
field along the line of horizon.

The team and opponent players as well as the goal attractor were sources
(or sinks) of potential, and the superposition of their potentials was assumed
to indicate good (or bad) directions to play the pass in. A threshold potential
had to be exceeded to trigger a pass, provided also that this trigger occured
within a certain region of interest.

Once the decision was made, the execution of the pass involved cooperation
between sender and receiver. To improve the precision of the kick, we used
visual feedback to track the receiver of the pass. For that, he was required to
turn sideways to increase the chance of being picked up by the robot recognition
code. Knowing when and in what direction the ball has then been kicked, the
receiver also used that information to provide a better update to his Extended
Kalman Filter.

The last chapter served mainly to demonstrate and test our algorithm.
Using a Matlab implementation, we showed the evolution of the region of
interest along the field, tested the clipping of potential when some players were
hidden behind others and finally commented on the decisions made in different
typical game situations.

61

62 CONCLUSION

Using a number of frames taken from a video recording, we then presented
our overall work in two classical game situations, describing step by step the
actions taken by sender and receiver, also highlighting the important benefits
that resulted from the new passing behaviour.

As mentioned in the introduction, passes are unquestionably an indispens-
able “tool” in real team sports. It is clear that an efficient, reliable and also
tunable passing behaviour would constitute a major contribution to the over-
all game performance and a key advantage over other teams that do not play
passes.

We have shown that our approach gives satisfactory and consistent results
in simulations; practical tests have also shown good results, even if better or
more reliable ball handling capabilities would further improve the efficiency of
the passing, and more consistent robot detection by the Vision module would
allow for better lining up of the shots.

In that regard, this thesis is at least a proof of concept that it is possible
to introduce such high level behaviour in the Four Legged League. Previously,
there was little motivation to invest in further research and development of
more robust and precise robot recognition, resulting in rather unreliable robot
detection (which additionally only works for red robots). This limits not only
the performance of lining up the shot, but also creates one important short-
coming: in real game situations, we do not know the positions of the opponent
players.

If robot detection was at a point where it would deliver adequate infor-
mation about the opponent positions, our algorithm could be used right away
without any modification. All we needed to do is to quickly sweep the region
of interest with the camera, and once all information is gathered, run our deci-
sion making algorithm. The scanning would require some time from the three
seconds until the robot would have to kick the ball, but, in our experience,
this should not be a problem as the turning and lining up generally seems to
require very little time.

We also came to suggest some of the following points which should be
addressed in future work: Make robot detection more reliable, to deliver more
precise information about both red and blue robots in sight, independent of
their orientation (as we have no influence on the heading of opponent robots).
Once this is done, modify the behaviour that a player (who considers passing
in the first place) scans the region of interest plus some safety margin on both
sides to also take robots into account which are just outside of it. Having
gathered all the relevant information, run the passing algorithm and possibly
carry out the pass execution.

If the Vision module also returned some measure of confidence about the
different robots seen, one should include this information in the core radius
for the potentials later on, as that way the amount of uncertainty about its
position can be included in the evaluation. As mentioned in the third chapter,
one should also come up with some measure of confidence about scoring a goal
from the current position (or after potentially dodging an opponent in the way)
in order to balance between taking a direct shot or playing a pass.

Furthermore, one could try to include the heading information of the players
to create non–symmetric potentials. Clearly, there is no point in playing a

63

through pass towards the goal if the receiver is facing backwards (which is
generally unlikely with the NUbot code, but still possible).

Finally, one should also modify the receivers behaviour while the ball is
travelling in such a way, that he only strafes left or right to catch the ball,
instead of chasing after it always facing it straight on. This would help to
make much better use of through passes, which are an important feature of our
algorithm.

A P P E N D I X A

Proof & additional plots

The following proof has been moved here not to clutter up the main body of
the thesis. We also display some complimentary plots to the game situations
presented in Chapter 4.

A.1 Variances after coordinate transformation

We shall now argue, that it is safe to use rri(k) = r1(k) for i = 1, 2 as claimed
on page 23 at the end of Subsection 2.6.1.

Let us assume a standard situation as depicted in Figure 2.4 on page 22. We
have two measurements for the ball, that is its distance and bearing db and ϑb

(for reasons of simplicity we shall drop the index b for the rest of this section).
The measurement errors or variances of both are assumed to be independent
from each other, i. e. not correlated. Furthermore let us denote

E
{

d
}

= d̄ E
{

ϑ
}

= ϑ̄

E
{

(d− d̄)2
}

= σ2
d E

{

(ϑ− ϑ̄)2
}

= σ2
ϑ

and xr = f(d, ϑ) the function (2.13) on page 21 that relates the original mea-
surements to the new relative coordinates xr and yr (i. e. performs the transfor-
mation from local polar coordinates to local Cartesian coordinates). For small
variances and ignoring higher order terms, we can assume

(

xr

yr

)

= f(d, ϑ)

= f(d̄, ϑ̄) +
∂f

∂xr

∣

∣

∣

∣

(d̄,ϑ̄)
︸ ︷︷ ︸

:=J

·

(

d− d̄
ϑ− ϑ̄

)

(A.1)

If we now take the expectation value on both sides of (A.1), we find

(

x̄r

ȳr

)

= f(d̄, ϑ̄) (A.2)

as

E

{(

d− d̄
ϑ− ϑ̄

)}

= E

{(

d
ϑ

)}

− E

{(

d̄
ϑ̄

)}

= 0

65

66 APPENDIX A. PROOF & ADDITIONAL PLOTS

Now, looking at the variances, we find by using (A.2) in (A.1) and with
σ2
t := d2σ2

ϑ

var

(

xr

yr

)

= J

[

σ2
d 0
0 σ2

ϑ

]

JT

=

[

σ2
d sin2ϑ+σ2

t cos2ϑ −σ2
d sinϑ cosϑ+σ2

t sinϑ cosϑ

−σ2
d sinϑ cosϑ+σ2

t sinϑ cosϑ σ2
d cos2ϑ+σ2

t sin2ϑ

]

(A.3)

At this point, let us state and prove the following lemma.

Lemma A.1 (Approximation of variances)

If σ2
d ≥ σ2

t , then from (A.3) follows

var

(

xr

yr

)

≤ σ2
d id (A.4)

Proof: Rearranging (A.4), we find

0 ≤
[

σ2
d 0
0 σ2

d

]

−
[

σ2
d sin2ϑ+σ2

t cos2ϑ −σ2
d sinϑ cosϑ+σ2

t sinϑ cosϑ

−σ2
d sinϑ cosϑ+σ2

t sinϑ cosϑ σ2
d cos2ϑ+σ2

t sin2ϑ

]

and then

0 ≤
[

(σ2
d − σ2

t) cos
2ϑ (σ2

d − σ2
t) cosϑ sinϑ

(σ2
d − σ2

t) cosϑ sinϑ (σ2
d − σ2

t) sin
2ϑ

]

i. e. the above matrix must be symmetric positive semi–definite. This is the case
if and only if all the leading principal minors have non–negative determinants
(Sylvester criterion, [10]), resulting in our case in two conditions:

(i) The matrix must have non–negative determinant,

(ii) the first element must be non–negative.

The first condition is always fulfilled since the determinant is identically
zero; the second is satisfied with the Lemma’s initial assumption σ2

d ≥ σ2
t . �

Hence, in our application, we also need to focus only on the second condi-
tion. Naturally, we cannot give exact formulas for the variances of the distance
and angle measurements as these depend on too many and a number of un-
known factors involved in the visual capturing and processing. However, exper-
iments have shown that the following functions seem to give a good estimate
of both variances, depending on the distance of the ball:

σ2
d(d) =

(

sat
[3,200]

[

d

10
log10(d)

])2

(A.5)

and

σ2
ϑ(d) =

0.02, if circle fit successful and d < 30

0.004, if circle fit successful and d > 30

0.02, if circle fit unsuccessful

(A.6)

A.1. VARIANCES AFTER COORDINATE TRANSFORMATION 67

Distance db in [cm] GGGGGGGGGGA

V
a
ri

a
n
c
e
s
σ
2 d

a
n
d

σ
2 t

in
[c
m

2
]

GG
G
G
G
G
G
G
G
GA

σ2
d

σ2
t (CF ok)

σ2
t (no CF)

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

Figure A.1: Comparison of the different variances of ball distance and bearing
measurements.

where the sat function here crops any value below 3 and above 200 to these
limits.1 The functions (A.5) and (A.6) are shown in Figure A.1. As desired,
we can see that, the curve for σ2

d is (almost always) above the curves for σ2
ϑ,

hence condition (ii) is also (almost always) fulfilled.
We can also take a slightly different approach. With σ2

ϑ being close to
zero, we could use the near linearity of the sine function for small angles to
interpret the product σ2

t as the tangential variance of the ball, drawn in grey in
Figure A.2 on the following page (it may be hard to spot it behind the actual
arc that would represent the real tangential variance drawn on top of it to show
how well they match).

Concerning condition (ii), we can now see that it should always be fulfilled.
The variance of the distance measurement should always be larger than σ2

t

(on the sketch, the grey arrow should always stay inside the circle): Tests
have shown — and it is quite intuitive — that the angle measurements are
more precise than the distance measurements, as pixel errors (or the limited
resolution of the camera) for instance have a much smaller impact on the
centre of the circle fitted to the ball (to determine its bearing) than on the
radius (which gives us its distance). In other words, for a certain distance d,
the tangential variance σ2

t is almost always smaller than σ2
d.

So, in conclusion, although we may over–estimate the covariances slightly
(though the over–estimation is small at short ranges), we have a conservative

1 As mentioned in Chapter 2 on page 10, a least squares based circle fitting is used to
determine the balls bearing and distance. If the algorithm cannot properly fit a circle to
what is believed to be the ball in the captured picture, the bearing has to be determined
using the raw vision blob, resulting in significantly less precise estimation of the angle. Also,
if the ball is very close, the circle fitting is less precise as usually parts of the ball leave the
narrow field of view of the camera which obviously complicates the circle fitting.

68 APPENDIX A. PROOF & ADDITIONAL PLOTS

xr
b

yrb

σ2
t σ2

dσ2
ϑ

yr

xr

Figure A.2: Close–up showing the different variances and how they relate to
each other.

estimate making it reasonably safe to use σ2
d for both the xr and yr “measure-

ments” in the Extended Kalman Filter.

A.2. ADDITIONAL PLOTS 69

A.2 Additional plots

The following series of plots complements the various situations introduced
in Subsection 4.2.3 on page 50.

7
5

8

4

3

6

In
d
iv

id
u
a
l
p
o
te

n
ti

a
ls

o
f
o
b
je

c
ts

GG
G
G
G
G
G
G
G
GA

O
v
e
ra

ll
p
o
te

n
ti

a
l

GG
G
G
G
G
G
G
G
GA

Bearing [degrees]

0 30 60 90 120 150 180 210 240 270 300 330 360

0 30 60 90 120 150 180 210 240 270 300 330 360

-100

0

100

200

300

-50

0

50

100

150

Figure A.3: Potentials in Situation 1.

70 APPENDIX A. PROOF & ADDITIONAL PLOTS

7 6

23

5

8

4

In
d
iv

id
u
a
l
p
o
te

n
ti

a
ls

o
f
o
b
je

c
ts

GG
G
G
G
G
G
G
G
GA

O
v
e
ra

ll
p
o
te

n
ti

a
l

GG
G
G
G
G
G
G
G
GA

Bearing [degrees]

0 30 60 90 120 150 180 210 240 270 300 330 360

0 30 60 90 120 150 180 210 240 270 300 330 360

-200

-100

0

100

200

-50

0

50

100

150

Figure A.4: Potentials in Situation 2.

A.2. ADDITIONAL PLOTS 71

6

3

5

2

7

8

4In
d
iv

id
u
a
l
p
o
te

n
ti

a
ls

o
f
o
b
je

c
ts

GG
G
G
G
G
G
G
G
GA

O
v
e
ra

ll
p
o
te

n
ti

a
l

GG
G
G
G
G
G
G
G
GA

Bearing [degrees]

0 30 60 90 120 150 180 210 240 270 300 330 360

0 30 60 90 120 150 180 210 240 270 300 330 360

-100

-50

0

50

100

150

200

-50

0

50

100

150

Figure A.5: Potentials in Situation 3.

72 APPENDIX A. PROOF & ADDITIONAL PLOTS

2

6

3

5

7

8

4

In
d
iv

id
u
a
l
p
o
te

n
ti

a
ls

o
f
o
b
je

c
ts

GG
G
G
G
G
G
G
G
GA

O
v
e
ra

ll
p
o
te

n
ti

a
l

GG
G
G
G
G
G
G
G
GA

Bearing [degrees]

0 30 60 90 120 150 180 210 240 270 300 330 360

0 30 60 90 120 150 180 210 240 270 300 330 360

-100

-50

0

50

100

150

200

-50

0

50

100

150

Figure A.6: Potentials in Situation 4.

A P P E N D I X B

Source code & parameters

After presenting our actual parameter set–up, we will comment on the source
code of the main passing.

B.1 Parameters

The following parameters determine the passing behaviour by influencing the
potential field on which the passing decision is based. See Chapter 3 for details.

Symbol Value Name / short description

τ0 185 Nominal threshold for passing trigger
dA 30 Team mate core potential shape parameter
dM 60 Team mate core potential shape parameter
dN 150 Team mate core potential shape parameter
dB 180 Team mate core potential shape parameter
hT,0 145 Maximum core potential from team mate
hO,0 -50 Maximum core potential from opponent
hGA,0 45 Maximum core potential from goal attractor
rT,0 20 Core radius (in [cm]) of team mate
rO,0 20 Core radius (in [cm]) of opponent
rGA,0 0 Core radius (in [cm]) of goal attractor
sT,0 -2000 Slope coefficient of team mate potential function
sO,0 0.1 Slope coefficient of opponent potential function
sGA,0 -0.5 Slope coefficient of goal attractor potential function
γT,0 -25 Cut–off for team mate potential function
γO,0 10 Cut–off for opponent potential function
γGA,0 -200 Cut–off for goal attractor potential function

Table B.1: Parameters from the third chapter.

B.2 Source code

Going through the source code step by step, we shall now see how we imple-
mented the concepts and equations from the third chapter in one large algo-
rithm. Currently this is done in as with the large number of tunable
parameters it is important to have a short development / update cycle, which

73

74 APPENDIX B. SOURCE CODE & PARAMETERS

would not be the case with C++ (as described in the first chapter).1 However,
it is quite likely that the code will be ported to C++ at some later stage to
save processing power (for an improved and refined robot detection algorithm
for instance).

We recommend [2] as not only an excellent reference but also as a very
condensed tutorial for the programming language. A more extensive
introduction would be [1].

B.2.1 Initialisation

As with most algorithms, a few things need to be set–up and initialised:

1 # - * - coding: latin-1 - * -
2 """ """"""""""""""""""""""""
3 ___ _ _ _ _ _ _ _
4 |_ _|_ __ (_) |_(_) __ _| (_)___ __ _| |_(_) ___ _ __
5 | || '_ \| | __| |/ _` | | / __|/ _` | __| |/ _ \| '_ \
6 | || | | | | |_| | (_| | | __ \ (_| | |_| | (_) | | | |
7 |___|_| |_|_|__|_|__,_|_|_|___/__,_|__|_|___/|_ | |_|
8

9

10 """ """"""""""""""""""""""""
11 from math import pi,sqrt,atan,atan2,fabs
12 from operator import mod
13

14 offline = False # for debugging
15

16 # passing threshold
17 thresh = 185
18

19 # team mates
20 h_T0 = 145
21 r_T0 = 20
22 s_T0 = -2000
23 g_T0 = -25
24 d_A , d_M , d_N , d_B = 30, 60, 200, 230
25

26 # opponents
27 h_O0 = -50
28 r_O0 = 20
29 s_O0 = 0.1
30 g_O0 = 10
31

32 # goal attractor
33 h_GA0 = 45
34 r_GA0 = 0
35 s_GA0 = -0.5
36 g_GA = -200
37 ga_coord = [210 , 0]
38

39 # misc.
40 r2d = 180/pi; d2r = pi/180;
41

42 def l_mod(the_list,the_mod): # modulus function for lists
43 out = []
44 for i in the_list:
45 out = out + [i % the_mod]
46 return out
47

48 def modpm180(ang): # mod angles to -180...180
49 out = mod(ang+360,360)
50 if out > 180:
51 out = out - 360
52 return out

1 As mentioned earlier, we implemented an (in the results) identical version of the algo-
rithm in Matlab for its development but also the generation of the graphics.

B.2. SOURCE CODE 75

For our convenience, we define a function l_mod() which is simply an ex-
tension of the normal modulus function to lists. Also, we create modpm180() ,
a function which normalises angles into the interval]−180, 180].

B.2.2 Object set–up

This is where check_for_pass() itself starts, which will eventually return
pass quality, direction, receiver id and the angle how much the pass will go off
the receiver’s bearing (for through passes).

1 def check_for_pass(the_team,the_opp):
2 # RETURNS: QUALITY , BEARING (in rad!) , RECEIVER , DELTA_BEA RING (in rad!)
3

4 myx , myy = the_team[0][0] , the_team[0][1]
5

6 if (myx > 205 and fabs(myy)-65 < 0): # in opp's pen. box -> shoot! not pass
7 print "Nooo pass (b c in pbox)!"
8 return [0.0,0.0,-1,0.0]
9

10

11

12 """ """"""""""""""""""""""""
13 ____ _ _ _ _
14 / ___|_ __ ___ __ _| |_ ___ ___ | |__ (_) ___ ___| |_ ___
15 | | | '__/ _ \/ _` | __/ _ \ / _ \| '_ \| |/ _ \/ __| __/ __|
16 | |___| | | __/ (_| | || __/ | (_) | |_) | | __/ (__| |___ \
17 ____|_| ___|__,_|_____| ___/|_.__// |___|___|\ __|___/
18 |_/
19

20 """ """"""""""""""""""""""""
21 # Each object contains the following information
22 #
23 # 0 1 2 3 4 5 6 7
24 # center | height | radius | slope | cut-off | dist | kind | id
25 # deg ua deg ua/deg ua cm 1,2,3 int
26 #
27 # where kind: 1 = team, 2 = opp, 3 = other | id = 1,...,7
28 n = len(the_team)-1
29 team_d = [0.0] * n; team_th = [0.0] * n; objects = []; i = 0;
30

31 # 1. team mates
32 for team_mate in the_team[1:n+1]:
33

34 d = sqrt((myx-team_mate[0]) ** 2+(myy-team_mate[1]) ** 2)
35 if d == 0:
36 print "Team mate reported with d=0! Something's wrong!"
37 return [0.0,0.0,-2,0.0]
38

39 th = int(mod(atan2(team_mate[1]-myy,team_mate[0]-myx) * r2d+360,360)+.5)
40

41 if d ≤ d_A: h_t = 0
42 elif d ≤ d_M: h_t = (d-d_A)/(d_M-d_A) * h_T0
43 elif d ≤ d_N: h_t = h_T0
44 elif d ≤ d_B: h_t = (d_B-d)/(d_B-d_N) * h_T0
45 else : h_t = 0
46

47 objects = objects + \
48 [[th, h_t, int(atan(r_T0/d) * r2d+.5), s_T0/d, g_T0, d, 1, i]]
49

50 team_d[i] = d; team_th[i] = th; # store d and th for later
51

52 i += 1
53

54 # 2. opponent players
55 for opponent in the_opp:
56

57 d = sqrt((myx-opponent[0]) ** 2+(myy-opponent[1]) ** 2)
58 if d == 0:
59 print "Opponent reported with d=0! Something's wrong!"
60 return [0.0,0.0,-2,0.0]
61

76 APPENDIX B. SOURCE CODE & PARAMETERS

62 th = int(mod(atan2(opponent[1]-myy,opponent[0]-myx) * r2d+360,360)+.5)
63

64 h_o = -h_O0 * d/650+h_O0
65

66 objects = objects + \
67 [[th, h_o, int(atan(r_O0/d) * r2d+.5), d * s_O0, g_O0, d, 2, i]]
68

69 i += 1
70

71 # 3. goal attractor
72 d = sqrt((myx-ga_coord[0]) ** 2+(myy-ga_coord[1]) ** 2)
73 th = int(mod(atan2(ga_coord[1]-myy,ga_coord[0]-myx) * r2d+360,360)+.5)
74

75 if d == 0:
76 print "Goal attractor reported with d=0! VERY unlikely, that!!"
77 return [0.0,0.0,-2,0.0]
78

79 objects = objects + \
80 [[th , h_GA0 , r_GA0 , s_GA0 , g_GA , d , 3 , i]]
81

82 if d < 120: # increase threshold as player comes closer to goal
83 the_thresh = (120-d)/120 * thresh/2 + thresh
84 else :
85 the_thresh = thresh
86

87 ga_bear = th # store goal attractor bearing for later
88

89

90 # 4. sort objects by distance
91 objects.sort(lambda x,y: cmp(float(x[5]), float(y[5])))

At the beginning, we check if the player is in the offensive penalty box. If
he is in there, he should never consider passing (too risky), but rather take a
shot at the goal himself.

However, if he is not in that area, the actual algorithm is launched. First we
calculate the relative bearing and distance for each object class, that is team
mates, opponents and goal attractor (as their positions are given in absolute
coordinates through the global Object Array and passed over in that form).

Then, the an entry for that object is stored in the local objects –array. Fi-
nally, the objects are sorted according to their distance, from closest to farthest
(in preparation of our clipping solution later on).

We also set the actual threshold value τ(dGA) for triggering a pass, now
that we have calculated the distance to the goal attractor.

B.2.3 Calculation of the potential field

The next big step is to iterate through the objects to determine and add their
influence, degree by degree, to the potential field.

1 """ """"""""""""""""""""""""
2 ____ _ _ __ _ _ _
3 / ___|__ _| | ___ _ __ ___ | |_ / _(_) ___| | __| |
4 | | / _` | |/ __| | '_ \ / _ \| __| | |_| |/ _ \ |/ _` |
5 | |__| (_| | | (__ _ | |_) | (_) | |_ _ | _| | __/ | (_| |
6 ______,_|_|___(_) | .__/ ___/ __(_) |_| |_|___|_|_ _,_|
7 |_|
8

9 """ """"""""""""""""""""""""
10 posblock = []; negblock = []; att = [0 for i in xrange(360)];
11

12 for obj in objects:
13 co_c = obj[0]; co_h = obj[1]; co_r = obj[2];
14 co_s = obj[3]; co_co = obj[4]; co_k = obj[6];
15

16 # ignore zero height objects
17 if co_h == 0: continue

B.2. SOURCE CODE 77

18

19 # create potential, respecting clipping effects
20 lim = round((co_co-co_h)/co_s+co_r)
21

22 if co_k == 1: # team mates, so we want to clip negative attractors
23

24 for deg in xrange(181):
25

26 if deg ≤ co_r: # within flat part
27 half = co_h
28 elif deg ≥ lim: # cut-off part
29 half = co_co
30 else : # sloped part
31 half = co_h+co_s * (deg-co_r)
32

33 # shift value by object_center degrees
34 deg_shifted = int(mod(360+deg+co_c,360))
35 if deg_shifted not in negblock or deg ≥ lim:
36 att[deg_shifted] += half
37

38 # mirror value from 360 back
39 if deg ≥ 1 and deg ≤ 179:
40 deg_shifted = int(mod(360-(deg-co_c),360))
41 if (deg_shifted not in negblock) or (deg ≥ lim):
42 att[deg_shifted] += half
43

44 posblock = posblock + l_mod(xrange(co_c-co_r+360,co_c+c o_r+360+1),360)
45

46 if co_k == 2: # opponents, so we want to clip positive attractors
47 for deg in xrange(181):
48

49 if deg ≤ co_r: # core
50 half = co_h
51 elif deg ≥ lim: # cut-off part
52 half = co_co
53 else : # sloped part
54 half = co_h+co_s * (deg-co_r)
55

56 # shift value by object_center degrees
57 deg_shifted = int(mod(360+deg+co_c,360))
58 if deg_shifted not in posblock or deg ≥ lim:
59 att[deg_shifted] += half
60

61 # mirror value from 360 back
62 if deg ≥ 1 and deg ≤ 179:
63 deg_shifted = int(mod(360-(deg-co_c),360))
64 if (deg_shifted not in posblock) or (deg ≥ lim):
65 att[deg_shifted] += half
66

67 negblock = negblock + l_mod(xrange(co_c-co_r+360,co_c+c o_r+360+1),360)
68

69 if co_k == 3: # other objects, no clipping
70 for deg in xrange(181):
71

72 if deg ≤ co_r: # core
73 half = co_h
74 elif deg ≥ lim: # cut-off part
75 half = co_co
76 else : # sloped part
77 half = co_h+co_s * (deg-co_r)
78

79 # shift value by object_center degrees
80 deg_shifted = int(mod(360+deg+co_c,360))
81 att[deg_shifted] += half
82

83 # mirror value from 360 back
84 if deg ≥ 1 and deg ≤ 179:
85 deg_shifted = int(mod(360-(deg-co_c),360))
86 att[deg_shifted] += half
87 # end for obj in objects
88

89

90 if offline: # store results to csv file for debugging
91 write = '' ; i = 0;

78 APPENDIX B. SOURCE CODE & PARAMETERS

92 for t_att in att:
93 write = write+`i`+ ',' +`t_att`+ '\n'
94 i += 1
95 filename = "E:\Studium\d_diplomarbeit\python\data.csv" ;
96 infile = open(filename, "w"); infile.write(write); infile.close();

The main idea here is to use a loop going from 0 to only 180 degrees (which
is sufficient due to the symmetry of our potential function) to generate the
potential in each point according to (3.2) on page 39. At the same time we
shift the potential by c degrees and “mirror” the value to gain the full 360
degrees influence.

At the same time we take care of the clipping with the help of two lists —
a positive and a negative block list. After an object has added its 360 degree
wide influence to the potential field, the angles that make up its core (that is
all the angles in [c− r, c+ r]) are appended to the respective block list.

The positive block list is then used to block future negative influences at
each of its member bearings (as future objects are necessarily farther away due
to our sorting by distance at the end of the previous code snippet); the negative
block list in turn takes care of clipped positive influences. However, only the
sloped and core parts of some object’s potential function can be blocked. We
do not want to clip the influence from the cut–off part of the potential functions
as we want to retain the “fine tuning” effect they create around the field.

B.2.4 Final passing decision

1 """ """"""""""""""""""""""""
2 __ __ _ _ _ _
3 | \/ | __ _| | _____ __| | ___ ___(_)___(_) ___ _ __
4 | |\/| |/ _` | |/ / _ \ / _` |/ _ \/ __| / __| |/ _ \| '_ \
5 | | | | (_| | < __/ | (_| | __/ (__| __ \ | (_) | | | |
6 |_| |_|__,_|_|____| __,_|___|___|_|___/_|___/| _| |_|
7

8

9 """ """"""""""""""""""""""""
10 # calculate ROI
11 if myx < -135: # last quarter of the field -> ROI = f(myy)
12 if myy ≥ 0:
13 throi = 90-.5 * myy
14 else :
15 throi = -90-.5 * myy
16 throi = mod(int(throi+.5),360)
17

18 else : # ROI = f(GA_bearing)
19 throi = ga_bear
20

21 if myx > 0: # sender in offensive half - scale ROI with with myx
22 dthroi = int((1+myx/270) * 36+.5)
23 else : # defensive half - ROI constant width
24 dthroi = 36
25

26 roi = l_mod(xrange((throi-dthroi)+360 , (throi+dthroi)+ 361) , 360)
27

28 # find maximum inside ROI
29 max_att = 0.0; i = 0;
30 for i in roi:
31 if (att[i] ≥ the_thresh) and (att[i] ≥ max_att):
32 max_att = att[i]
33 pass_ang = i
34

35 # calculate pass receiver
36 if max_att > 0: # we found a winner
37

38 min_d = 1000.0; receiver = -1;
39 pass_range = l_mod(range(pass_ang-35,pass_ang+36),360)

B.2. SOURCE CODE 79

40

41 for i in xrange(n):
42 if (team_th[i] in pass_range) and (team_d[i] < min_d):
43 receiver = i
44

45 # calculate how far the ball is to go "ahead" of the receiver, i f not bang on
46 delta_ang = modpm180(pass_ang-team_th[receiver])
47 d20 = fabs(delta_ang)-20 # pass more than 20 deg off the receiver -> crop it down to 20
48 if d20 > 0: # delta > +-20 deg
49 if delta_ang > 0:
50 delta_ang = 20
51 pass_ang -= d20
52 else :
53 delta_ang = -20
54 pass_ang += d20
55

56 # output and return
57 print "PASS: %i deg | Q: %3.3f | ID: %i | D: %i deg" \
58 % (pass_ang,max_att-the_thresh,receiver,delta_ang);
59

60 return [max_att-the_thresh,pass_ang * d2r,receiver+1,delta_ang * d2r]
61

62 else :
63

64 print "Nooo oooooooo pass !"
65 return [0.0,0.0,-1,0.0]
66

67

68

69 if offline: # for debugging
70 team = [[209.3,-91.0] ,[162.2,43.2]]
71 opp = [[270,0],[119,102],[-1,-90],[175,-10]]
72

73 check_for_pass(team,opp)

In this last stage of our algorithm, we first calculate the region of interest
as described on page 34. We then look for a “winning” bearing inside it by
searching the maximum potential but ignoring angles that do not exceed the
threshold τ set above.

If we have found a “winner”, we need to determine what robot is actually
meant to be the receiver.2 This is done taking two things into consideration:
On the one hand, with a very high probability the receiver will be at most 35◦

away from the passing bearing.3 On the other hand, if there are more than one
team mate in this region, it is usually the closer one that is supposed to get the
ball. So, for our algorithm, we assume that the receiver is a) the closest team
mate that b) is within ±35◦ of the passing bearing. Extensive simulations have
shown that this method gives great and very reliable results.

Finally, we either return the pass bearing together with our measure of
quality (again, the difference between the bearings potential and the threshold),
the receiver id and the amount of degrees the passing bearing lays off the actual
receiver bearing, or we return a negative quality as message that no pass is being
suggested.

2 Interestingly enough, this information does not directly follow from the maximum in
the potential field when the core radius of team mates rT,0 is non–zero.

3 This corresponds roughly to a team mate core radius of 20 cm at a distance of dM =

60 cm, the closest receiver distance that could trigger a pass.

List of Symbols

General notations

n Scalars; lowercase letters

x Vectors; lowercase bold letters (always supposed to be column vectors,

if not transposed), or elementwise in parentheses:
(

x1 x2 . . . xn

)T

M Matrices; uppercase bold letters, or elementwise in brackets:

[

m11 m12

m21 m22

]

S Sets; uppercase “calligraphic” letters

P Points; uppercase “upright” letters, with coordinates P = (xP, yP)

P Properties, assumptions; uppercase “Fraktur” letters

x̄ The average value of x

x̂ An estimated value of x

x− An a priori value of x

xk The value of variable x at frame k, sometimes also denoted x(k)

id Identity matrix of suitable dimensions

0 Zero matrix of suitable dimensions

81

Bibliography

We tried to provide as many publicly accessible web links as possible.

[1] David Ascher and Mark Lutz. Learning Python. O’Reilly & Associates,
Inc., Sebastopol, CA, USA, 2nd edition, December 2003.

http://books.google.com.au/books?vid=ISBN0596002815

[2] David M. Beazley. Python Essential Reference. New Riders Publishing,
Indianapolis, IN, USA, 2nd edition, June 2001.

http://books.google.com/books?vid=ISBN0735710910

[3] Stephan Chalup. Newcastle robotics laboratory homepage. Website,
February 2006. http://robots.newcastle.edu.au/

[4] RoboCup Four Legged League Technical Committee. Teams 2006. Web-
page, January 2006. http://www.tzi.de/4legged/bin/view/Website/Teams2006

[5] RoboCup Technical Committee. RoboCup four–legged league rule book,
April 2006. http://www.tzi.de/4legged/pub/Website/Downloads/Rules2006.pdf

[6] Sony Corporation. ERS–7M3 user’s guide. User manual, 2005.
http://esupport.sony.com/US/perl/model-documents.pl?mdl=ERS7M3

[7] Sony Corporation. Sony AIBO Europe — Official Website. Website, 2006.
http://support.sony-europe.com/aibo/

[8] Python Software Foundation. Python programming language — official
website, 2006. http://www.python.org

[9] Kenny Hong. Enhancements to vision processing, and debugging software
for robocup soccer. Bachelor Thesis, November 2005.

http://www.cs.newcastle.edu.au/~c2103674/FinalReportWebVersion.pdf

[10] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge
University Press, Cambridge, UK, 1985.

http://books.google.com.au/books?&id=9wTacOjHE6IC

83

84 BIBLIOGRAPHY

[11] Rudolph E. Kalman. A new approach to linear filtering and predic-
tion problems. Transactions of the ASME–Journal of Basic Engineering,
82:34–45, March 1960.

http://www.cs.unc.edu/~welch/kalman/media/pdf/Kalman1960.pdf

[12] Oussama Khatib. Real–time obstacle avoidance for manipulators and mo-
bile robots. International Journal of Robotics Research, 5:90–98, April
1986. http://www.cs.unc.edu/~welch/kalman/media/pdf/Kalman1960.pdf

[13] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Pub-
lishers, Boston, USA, December 1990.

http://books.google.com.au/books?id=Mbo_p4-46-cC

[14] Tim Laue and Thomas Röfer. A behavior architecture for autonomous
mobile robots based on potential fields. 8th International Workshop on
RoboCup 2004 (Robot World Cup Soccer Games and Conferences), July
2005. http://www.informatik.uni-bremen.de/kogrob/papers/rc05-potentialfields.pdf

[15] Witold Pedrycz and Fernando Gomide. An introduction to fuzzy sets:
analysis and design. The MIT Press, Cambridge, MA, USA, May 1998.

http://books.google.com.au/books?vid=ISBN0262161710

[16] Michael J. Quinlan. Machine Learning on AIBO Robots. PhD thesis, The
University of Newcastle, Callaghan, NSW, Australia, March 2006.

http://robots.newcastle.edu.au/quinlan.html

[17] Michael J. Quinlan, Steven P. Nicklin, Kenny Hong, Naomi Henderson,
Stephen R. Young, Timothy G. Moore, Robin Fisher, Phavanna Douang-
boupha, Stephan K. Chalup, Richard H. Middleton, and Robert King.
The 2005 NUbots team report, February 2006.

http://robots.newcastle.edu.au/publications/NUbotFinalReport2005.pdf

[18] Greg Welch and Gary Bishop. An introduction to the kalman filter, April
2004. http://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf

[19] Lotfi A. Zadeh. Fuzzy sets. Journal of Information and Control, 8:338–
353, June 1965. http://dx.doi.org/10.1016/S0019-9958(65)90241-X

[20] Lotfi A. Zadeh. Fuzzy logic and approximate reasoning. Synthese, 30:407–
428, September 1975. http://www.springerlink.com/link.asp?id=j747055567237033

