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Abstract

Thermal management in data centres requires a complicated trade-off between cooling costs and thermally induced equipment
failure rates. Using ideas from cooperative control and distributed rate limiting, in this paper we describe a distributed
architecture that can be used for thermal aware load balancing for a common type of modular data centre; namely an algorithm
that, for a given demand D∗, distributes load to individual machines such that the temperatures in the individual modules are
equalised. The benefit of shifting load based on thermal considerations is that significant gains in cooling cost can be achieved.
We evaluate the performance of the algorithm using computational fluid dynamics (CFD) and Matlab simulations. Our
results show that significant cost savings can be made by applying such algorithms, and that these can be achieved without
the need for detailed modelling and tuning of controllers.
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1 Introduction

In this study we examine air temperature manage-
ment in buildings and data centres. A data centre is a
warehouse-scale building which may contain up to tens
of thousands of high performance servers as well as the5

associated networking and cooling equipment, thereby
producing large amounts of heat as they perform their
tasks. In large scale data centre operations, the mod-
ular data centre approach is becoming more and more
popular, [6]. Such data centres are built from a number10

of independent, autonomous modules (typically housed
in standardised overseas shipping containers), that each
contain a large number of servers. Computer room air
conditioning (CRAC) units are used to extract heat
coming from the servers, cool it, and provide the cooled15

air back to their inlets, so as to prevent equipment dam-
age. Cooling equipment is clearly crucial to long-term
reliability of operation; it has been shown for instance
that every 10 ◦C increase above 21 ◦C decreases the
long-term reliability of electronics by 50% [13]. In addi-20
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tion, a 15 ◦C rise increases the failure rates of hard disk
drives by a factor of two [2]. It is also possible to use
water cooling in data centres [20,1] but the majority of
data centres use air cooling.

The cost of providing cool air to the server inlets can 25

be considerable. Consider a 30,000 ft2 data centre with
1000 standard computing racks, each consuming 10 kW.
With an average electricity cost of $100/MWh the an-
nual cooling cost would be in the order of $4–$8 million,
[17]. It is thus clearly in the interest of the data centre 30

operator to operate the facility as efficiently as possible
to minimise such costs. Similar problems also arise else-
where, for example in thermal management of buildings.
Initiatives such as IBM’s “Smart Cities” program have
been created with this and similar management prob- 35

lems in mind.

Our objective in this paper is to address thermal man-
agement in a data centre which utilises modular data
centre components. Note that there have been numerous
proposals for the thermal management of servers in data 40

centres [21,13,8,16]. A notable deviation to this work [9],
considers a combination of the cooling power for CRAC
units and the idle and dynamic power of servers in a load
balancing scheme to lower overall energy costs. While
this appears to be a new approach to the problem, in this 45

paper we consider the traditional approach to achieve

1



cost of minimisation. In addition, there is an increased
trend toward energy proportional servers [4] which rep-
resent advanced servers where the idle power is virtually
zero and the idle power of servers is likely to be less im-
portant in the future. All of these proposals, however,5

rely on a central scheduler, which is both a bottleneck
for control messages and a single point of failure. Such
central solutions typically require lengthy calibrations
to minimise operational costs. A distinctive feature of
the present work, however, is that we would like to pro-10

pose a robust distributed algorithm which attempts to
reduce cooling costs, prevents equipment damage while
satisfying demand requirements, all without the need of
detailed calibrations. Such an algorithm would, with its
plug & play functionality, be eminently applicable in a15

modular environment. Specifically, the contributions of
this paper are as follows:

• We present a distributed algorithm to both regulate
total demand serviced to a certain given level, sub-
ject to the additional constraint that temperature is20

equalised amongst all machines.

• In certain situations, when more demanding require-
ments are placed on the data centre, we show that ex-
isting algorithms from communication networks can
be applied in this context.25

• Finally, data from an industry standard computa-
tional fluid dynamic (CFD) Flovent [7] is used to
validate the algorithms.

The performance of the proposed algorithms in minimis-
ing the total cooling cost is evaluated. It will be shown30

that the total cooling costs can be reduced significantly
while servicing a desired demand.

The application described in this paper uses algorithms
first described in [11] and [22]. The specific contribution
of this work is to apply and develop the ideas in these pa-35

pers to problems arising in thermal management of data
centres. A detailed mathematical analysis of these algo-
rithms is given in the aforementioned papers. Hence, in
the sequel, we give only very brief mathematical details.

2 Preliminaries40

We shall study thermal management in the context of a
large scale data centre. In the following, we shall use the
term “machine” in a rather abstract sense in that we as-
sume that each “machine” actually consists of a housing
that contains a large number of individual servers which,45

jointly, have a cooling facility associated with them. This
assumption is justified, for instance, by the increasingly
popular modular data centres, where large clusters of
servers are housed in autonomous shipping containers
that are all connected to a common chilled water supply,50

[6]. Such a container would then be considered a “ma-
chine” in the context of this paper.

2.1 Problem setting

We now consider a data centre that is constructed using
n machines. Each machine i ∈ {1,2, . . . ,n} has, at time 55

k = 0,1,2, . . . , an inlet temperature (or just “tempera-
ture”) of Ti(k), which represents the temperature of the
air sucked into the servers for cooling. We assume that
this temperature is the same for all the servers inside
a given machine; this assumption is justified in partic- 60

ular when suitable cold aisle containment is used inside
the machine (Our simulations show that the largest dif-
ference in temperature between the inlets of servers is
0.3 ◦C). In addition, simulation 3 examines how much
the demand of neighbouring server racks affects the tem- 65

perature. Furthermore, even in the presence of this de-
fect the algorithm works well. Note our simulations are
based on Flovent [7], an industry standard simulator,
and these simulations indicate that even in the presence
of this effect, the algorithm is efficacious. We also assume 70

that there is sufficient distance between the machines
that heat exchanges can be neglected and that these are
cased and isolated from each other. Recall that machines
refer to housings that contain a large number of individ-
ual servers. Additionally, each machine is servicing a de- 75

mand (also referred to as “work load”) of Di(k), so that
the total demand serviced by the data centre at time k is

D(k) :=
∑

i

Di(k) (1)

An important feature of our work is that the total de-
mand D(k) is regulated to some desired value D∗, which
may be time-varying (for notational convenience, we 80

omit the dependence of D∗ on k). Hence, the value of the
total demand serviced and its deviation from D∗ must
be known either implicitly or explicitly by at least one
machine in the data centre.

Given a constant amount of cooling energy supplied to 85

each machine, the temperatures inside each machine will
be a direct function of the demand serviced by that ma-
chine (since the heat energy dissipated by the CPUs is
roughly proportional to the amount of work done by the
CPUs). Borrowing from the terminology established in 90

[11], this interdependency is described by the “utility
functions”, which relate the “physical state” (demand)
Di of machine i to its “utility value” (temperature):

Ti = fi(Di) (2)

Note that fi is typically non-linear and is used to model
complicated fluid dynamic effects as well as natural cool- 95

ing within the machines. We assume that the manner
in which workload is distributed inside the machines is
uniform.

Next, we assume that a limited information exchange
between machines is possible. Specifically, at time k, ma- 100
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chine i can provide information about itself (in partic-
ular its current temperature) to another machine j if
and only if (i,j) is an arc in the directed communica-
tion graph G(k) =

(

N ,E(k)
)

, which thus describes the
topology of the possible information exchange between5

machines. This graph is allowed to change over time and
is assumed to be jointly strongly connected over a given,
fixed time horizon m ≥ 1. By this, we mean that ev-
ery union of m consecutive graphs is assumed to yield a
strongly connected graph. 110

We would now like to find an algorithm that will attempt
to equalise the temperatures among machines, while en-
suring that some desired demand D∗ is being serviced
by the data centre.

2.2 A cooperative control scheme (Algorithm 1)15

The recent publication [11] gives an in-depth discussion
of three iterative algorithms and variations thereof that
are designed to allow a network to achieve a common goal
cooperatively while satisfying certain local constraints.
The data centre load balancing problem fits into this20

framework and we shall now reproduce, for convenience,
some of the mathematical statements from this publica-
tion (in particular Theorem 4.1).

To apply these results, we must assume that the util-
ity functions are continuous, monotone functions with25

bounded growth rates (to guarantee feasibility of the so-
lution) and that each machine has knowledge of the to-
tal demand being serviced by the data centre. Note it is
also assumed that the update law for the algorithm uses
a time scale that is larger than that of the dynamics of30

the settling time for the temperatures; namely that the
relationship between Di and Ti can be adequately mod-
elled using a static map. Given these assumptions, the
following theorem (adapted from Theorem 4.1 in [11])
provides a stable update law to iteratively refine the de-35

mands being serviced by the individual machines so that
the data centre converges to the desired behaviour:

Theorem 1. For some initial condition Di(k = 0)
and any sequence of strongly connected communication
graphs, suppose that the machines iteratively update40

their work load according to

Di(k+1)=Di(k)+
∑

(j,i)∈E(k)

ηij(k)
(

Tj(k)−Ti(k)
)

+µ(k)σ(k)

(3)

1 The union of a set of graphs on a common vertex set is
defined as the graph consisting of that vertex set and whose
edge set is the union of the edge sets of the constituent
graphs.

where

σ(k)=











D∗−
n
∑

i=1

Di(k+1−M) if k+1 is a multiple of M

0 otherwise
(4)

with M :=n−1. If the gains satisfy

0 < µ ≤ µ(k) ≤ µ̄ and 0 < ηi ≤ ηij(k) ≤ η̄i (5)

then — provided µ̄ > 0 and η̄i > 0 are sufficiently
small — the demands Di(k) converge asymptotically to 45

values D∗
i for which fi

(

D∗
i

)

= T ∗ for all i = 1, . . . ,n and
∑

iD
∗
i = D∗.

For a proof of the Theorem and a much more detailed
description of the mathematical assumptions therein,
please refer to [11]. 50

Comment. Explicit bounds on η̄i and µ̄ are also given
in [11]. While for the purpose of proving convergence in
the theorem small values of these constants are required,
in practical situations it is found that they can be sig-
nificantly larger. Mathematical details are given in [11]. 55

These are quiet involved and are beyond the scope of
the present paper. Roughly speaking, the stability con-
ditions are based on connectivity arguments in graphs.
As the graphs become large, then these conditions give
small controller gains. This approach does not account 60

for structural properties of the graph and consequently
may be quite conservative.

The update law (3) from the Theorem, which we will re-
fer to as Algorithm 1, thus provides a rule specifying how
to iteratively update the load on the machines to bal- 65

ance the temperatures among the machines in the net-
work. It basically consists of two intuitive-to-understand
parts: The first part, summing over the differences in
temperatures between neighbours, is aimed at reducing
the temperature differences; if, for instance, all neigh- 70

bouring machines of machine i are operating cooler than
machine i, then it should reduce its own demand in or-
der to approach the temperature level of the surround-
ing machines. The second part in the equation is to en-
sure that the global demand is satisfied. It is easy to 75

see that if the total demand serviced by all the ma-
chines is below the required quantity, then each machine
should increase their own work load somewhat so that
the network, jointly, increases the demand serviced until
it reaches the desired level. 80

The pseudocode shown in Figure 1 describes an imple-
mentation of this algorithm.

2.3 A notable simplification (Algorithm 2)

In situations where the communication graph is undi-
rected, where the total required demand is not subject to 85
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1 UpdateDemand()
2 Once every ∆ units of time do

3 for i = 1 : n
4 Di ← Di + η

∑

(i,j)∈E

(

Tj − Ti

)

5 if mod(k + 1 , n− 1) == 0
6 Di ← Di + µσ
7 endif
8 endfor

9 if mod(k + 1 , n− 1) == 0
10 σ ←

(

D∗ −
∑n

i=1 Di

)

11 endif

12 k ← k + 1
13 enddo

14 InitialiseDemand()
15 k ← 0
16 σ ← 0
17 for i = 1 : n
18 Di ← D∗/n
19 endfor

Figure 1. Pseudocode for Algorithm 1.

1 UpdateDemand()
2 Once every ∆ units of time do
3 for i = 1 : n
4 Di ← Di − η

∑

(i,j)∈E(Ti − Tj)

5 endfor
6 k ← k + 1
7 enddo

8 InitialiseDemand()
9 k ← 0
10 for i = 1 : n
11 Di ← D∗/n
12 endfor

Figure 2. Pseudocode for Algorithm 2.

change, and where the utility functions satisfy stronger
assumptions, then considerable simplifications are pos-
sible. In particular, the algorithms given in [22] apply.
Specifically, suppose that: (a) the communications graph
is undirected; (b) the desired demand D∗ is constant;5

(c) the utility functions fi : R→ R are increasing, con-
cave, differentiable functions, and have continuous first
derivatives. Then the algorithm described by the pseu-
docode in Figure 2 may be used to solve the thermal
management problem posed above.10

The basic idea encapsulated above is as follows. Initially,
the demand is divided evenly among the server racks.
The demand Di of each machine i is then iteratively
updated with a term that is proportional to the sum over
the differences between the own temperature and that15

of neighbouring racks, that is

D1(0) = D2(0) = . . . = Dn(0) (6a)

Di(k + 1) = Di(k)− η
∑

(i,j)∈E

(

Ti(k)− Tj(k)
)

(6b)

The gain parameter η determines the responsiveness and
stability of the algorithm and its choice is discussed in
[22]. The stability and convergence properties are cap-
tured by the following theorem, cf. [22]. Before stating 20

this theorem, we need to establish some further termi-
nology. Denote by gi = f−1

i the inverse functions of the
fi, which must exist given the convexity and differen-
tiability assumption above. Note also, due to symmetry,
the system given by (6) satisfies the demand constraint 25

(1) for all k = 0,1,2, . . . .

Theorem 2. Let di be the degree of node i in the com-
munication graph. If η satisfies:

0 < η <
1

2
min

1≤i≤n

[

− g′i
(

Ti(0)
)

]

min
1≤i≤n

1

di
, (7)

then the system given by (6) will converge to

lim
k→∞

Di(k) = D∗
i

with
∑

i D
∗
i = D, and 30

lim
k→∞

Ti(k) = T ∗

for all i = 1, . . . ,n.

Proof. See [22].

∆ is indeed related to the settling time associated with
the fi() functions. In the original work on this topic [11],
these functions are static maps where as in this appli- 35

cation this is not entirely true. Our basic assumption is
that the dynamics associated with the fi() functions are
fast when compared with the update law. Of course this
assumption has to be validated experimentally and the
step size determined empirically. For our simulation ∆ 40

was always chosen to be much larger than the dynamics
associated with the fi() functions. Recall the objective
of this paper was illustrate the use of a new and innova-
tive distributed control algorithm developed in [11] for
this novel application. In our CFD simulations each it- 45

eration of the Flovent software was run every ∆ seconds.

Comment. Before proceeding to evaluate in simula-
tion the algorithms described in this paper, we note here
that the decentralised control advocated in this paper
is motivated by recent developments in consensus algo- 50

rithms and in gossiping algorithms. In this context it
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may be viewed as a somewhat non-traditional approach
to decentralised control systems. The interested reader
is referred to the work of Jadbabaie et al. [10], Olfati-
Saber and Murray [15], Lin et al. [12] and Moreau [14] for
initial ideas in this direction. More recent developments5

were presented by Knorn et al. [11] as well as Stanojević
and Shorten [22]. These later articles provide much of
the theoretical framework for the specific work described
in this paper.

3 Simulation and validation10

To evaluate the performance of the algorithms we used
a CFD simulator. Three simulations were conducted.
In the first simulation, we consider a data centre with
twelve machines of three different types (that is, four
machines of each type). Data from the CFD simulator15

was used to generate the utility functions, and Matlab

based simulations were then used to evaluate the ability
of Algorithm 1 to track a given time-varying demand.
We then repeat this simulation, using Algorithm 2, in
the case where the communication graph is undirected20

and the demand is fixed. Finally, we then apply Algo-
rithm 2 to a conventional (non-modular) data centre,
where “machines” are now represented by server racks
inside a single room. In this situation, to capture the ex-
tremely complicated fluid dynamic effects, the full simu-25

lation was carried out using the CFD simulator. Finally
note that while the gains in each situation may be cho-
sen in accordance with the bounds given in Theorems 1
and 2 (and the respective references), larger values were
in fact used to speed up convergence for the purpose of30

exposition.

3.1 Simulation setup

Our simulation setup follows that used in [21,13]. Each
machine (data centre) used in this study has dimen-
sions 11.7 m × 8.5 m × 3.1 m with a 0.6 m raised floor35

plenum that supplies cool air through perforated floor
tiles. There are four rows of servers with seven 40U
racks in each case, resulting in a total of 1120 servers.
The dimensions of the server racks are depicted in Fig-
ure 3(a). Note the front and rear doors were removed to40

allow the air to flow freely. The servers simulated were
based on Hewlett-Packard’s Proliant DL360 G3s model,
which consumes 150 W of power when idle and 285 W at
100% utilization. From this we could determine that the
total power consumption of the data centre is 168 kW45

(40 × 28× 150 W) when idle and 319.2 kW (40 × 28×
285 W) at full utilisation. The flow rate of the server
rack was 1,500 ft3/min representing 40 servers with a
flow rate of 37.5 ft3/min. We also used an ideal energy
proportional version of said server, [4]. Recall that these50

represent advanced servers where the idle power is vir-
tually zero.
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Figure 4. Layout of simulation setup. To illustrate the com-
munication graphs used in simulation 3, the dotted lines in-
dicate which other machines the racks 1 and 13 from the
left cold aisle can exchange temperature information with.
Server racks in adjacent aisles are connected to lower tem-
perature differences between aisles.

For cooling, the data centre is equipped with four CRAC
units “A”, “B”, “C” and “D” whose locations are also in-
dicated in Figure 4. Each CRAC unit pushes air chilled 55

to 15 ◦C into the plenum at a rate of 10,000 ft3/min.
The cooling capacity of the each CRAC unit is limited
to 90 kW, and in full operation each CRAC unit itself
consumes 10 kW. Flovent basically uses a k-ǫ turbu-
lence model; see documentation describing mathemati- 60

cal modelling given as part of [7]. The air velocity, pres-
sure and turbulence at the front boundary of the server
racks are depicted in Figure 3(b), 3(c) and 3(d). CFD
simulations are now used routinely in data centre design
and have been found be to very useful by practising en- 65

gineers. There is, however, a need for detailed validation
against experimental data. These concerns, however, are
not addressed in this paper and CFD simulations are car-
ried out using the popular commercial package Flovent.

Given this simple setting, we now describe three basic 70

variations that may arise. In the first case, the machine is
exactly as described above with the standard HP servers.
This type is hereafter referred to as “NC-NF". For the
second case, we decided to model the machine using a
“cold aisle containment” assumption, [19] with CRAC 75

unit D offline. Recall that cold aisle containment refers
to the segregation of the cold aisle from the rest of the
data centre using physical barriers such as PVC curtains
or Plexiglas [5]. This type of data centre is likely to be-
come more and more popular in the future, [18]. This 80

type is hereafter referred to as “C-F". It is also possible
to use “hot aisle containment" which is the segregation
of the hot aisle from the rest of the data centre. While
there is some evidence that “hot aisle containment" may
be a more efficient design, it is recognised [18] that there 85

are difficulties in retrofitting this solution which may
make “cold aisle containment" the more popular design,
at least in the short-term. The third case is identical to
the second case, but servers of the energy proportional
type were used. This type is hereafter referred to as “C- 90

F-P". Each case has a utility function associated with it
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(a) Geometry of the server
rack. All components in the
server rack are 60cm thick.
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(b) Air velocities in front of the server rack.
At point A the air velocity is 1.18 m/s. The
air velocity at point B is 0.38 m/s and at point
C the air velocity is 0.622 m/s.
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(c) Pressure conditions in front of the server
racks. At point A the pressure is −2.75 Pa.
The pressure at point B is −0.61 Pa and at
point C the pressure is −1.13 Pa.

A

B

C

(d) Turbulence in front of the server racks.
The turbulence at point A is 0.0337 J/kg. At
point B the turbulence is 0.0102 J/kg and the
turbulence at point C is 0.01 J/kg

Figure 3. Geometry of the server rack as well as the air velocity, pressure and turbulence conditions in front of the server racks

that describes the relationship between load and maxi-
mum inlet temperature found inside the machine. These
utility functions, which we shall later use in our simula-
tions, are depicted in Figure 5.

In order to evaluate the performance of the algorithms5

we need to be able to calculate the cooling costs. Let
Q be the amount of power the servers consume, Tsup

the temperature of the air that the CRAC units sup-
ply, Tsafe = 25 ◦C the maximum permissible tempera-
ture at the server inlets in order to prevent equipment10

damage, Tmax the maximum temperature of the server
inlets in the machine and Pfan the power required by
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Figure 5. Utility functions.
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the fans of the CRAC units. The “coefficient of perfor-
mance” (COP), that is the ratio of heat removed to work
necessary to remove the heat, is a function of the supply
temperature Tsup being provided by the CRAC. There is
considerable debate over the maximum permissible tem-5

perature at the inlet in order to prevent equipment dam-
age. While there is a guidelines in this area it has changed
recently [3] and we selected the value Tsafe = 25 ◦C as it
is a well established value which has been used in other
systems [21,13]. The cooling cost C can then be calcu-10

lated as:

C =
Q

COP(Tsup)
+ Pfan (8)

If the highest temperature found at any inlet in the
data centre is below the “red-line” temperature, then
the CRAC is cooling the data centre excessively. In such
a situation, the supply temperature can be raised by15

Tsafe−Tmax (by reducing the amount of cooling) to re-
duce costs while still observing Tsafe.

Comment. While other factors such as complex non-
linear flow effects and the cost of pumping air to difficult-
to-reach parts of the data centre affect the cooling cost,20

the highest machine temperature is a major factor in the
cooling cost. This observation is what motivates us to
equalise temperatures.

If, in turn, Tsafe−Tmax is negative the equipment is in dan-
ger of being damaged and the supply temperature must25

be lowered in order to cool down the machine responsi-
ble for Tmax. In our simulations, to determine this max-
imum inlet temperature, we used the commercial CFD
simulator Flovent. Each of the four CRAC fan units
consumed 10 kW so that for each machine Pfan = 40 kW30

and Tsup = 15 ◦C. The COP curve used to calculate
the cooling costs is a standard curve for a water chilled
CRAC and is given in [13].

3.2 Simulation 1

As mentioned above, the setup for this simulation con-35

sists of a modular data centre site housing twelve ma-
chines (containers), four of each type described above.
Our objective in the following is to regulate the aggre-
gate CPU load to three levels: 40%, then 55% and fi-
nally 25% in a situation where the resulting communi-40

cation network is strongly connected, but chosen ran-
domly. The resulting evolution over time of the aggre-
gate demand, individual demands and individual tem-
peratures are given in Figure 6. The simulations are mea-
sured in terms of iterations for reasons which are dis-45

cussed in Section 2.3. As can be seen, the cost savings
achieved in the equilibrium for the 40% level are signif-
icant when compared to the initial temperature config-
uration. The maximum rack inlet temperature drops by
approximately 1 ◦C and consequently the cooling cost50

drops from 1.514 MW to 1.416 MW, yielding a 6.5% re-
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Figure 6. Performance of Algorithm 1 at three demand levels
D∗ = {40%, 55%, 25%}, which are indicated by the dashed
line in the top plot, using η = 0.1, µ = 1/3.
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Figure 7. Performance of Algorithm 1 with demand varying
in a periodic fashion, using η = 0.1, µ = 1/3.

duction in the cooling costs. This represents a saving of
tens of thousands of dollars annually.

Comment. As the equilibrium state is achieved for
any randomly connected graph, these cost savings are 55

robust with respect to changes (such as link failures) in
the communication topology.

Finally, Figure 7 depicts a scenario where the demand
is varying in a periodic fashion; for example daily de-
mand patterns are often assumed to be periodic. As can 60

be seen, satisfactory tracking is achieved even though
Algorithm 1 is designed for fixed point regulation only.
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Figure 8. Performance of Algorithm 2 with constant demand
of 40%, using η = 0.1.
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Figure 9. Performance of Algorithm 2 with a single broken
link and constant demand of 40%, using η = 0.1.

3.3 Simulation 2

The setup is exactly as before. However, we now enforce
the additional assumptions made in Sec. 2.3; recall in
particular the assumption of symmetry in the informa-
tion exchange. Figure 8 depicts Algorithm 2 equalising5

temperatures for a constant total load of 40%. Note,
however, the effect of breaking a single link. As can be
seen in Figure 9, the total demand constraint can no
longer be satisfied and the site cannot satisfy the most
basic quality of service requirement, namely that all re-10

quests are answered. Note that this is not surprising since
the algorithm was never designed to operate in such a
scenario.
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Figure 10. η = 13. The temperature of inlets of the server
racks at each iteration of Algorithm 2 inside a modular data
centre.

3.4 Simulation 3

A basic criticism of the discussion thus far may con- 15

cern the type of data centre site considered. In many
situations the assumption of containment is not valid.
Namely, that Ti of machine i depends not only on Di but
also potentially on Dj (j 6= i) and assumption regarding
the lack of heat exchange between machines is removed. 20

Surprisingly, the algorithm works well in this case also.
In such situations it is of interest to observe the perfor-
mance of the algorithms presented above. To conclude
this paper, we briefly apply Algorithm 2 to one such sit-
uation. Similar results can be expected for Algorithm 1 25

also.

Let us now consider a single machine as described above,
in particular of type 3. Then assume that the server
racks inside are labelled in pairs “1” to “14” as shown
in Figure 4. While any connected communication graph 30

could be used in our algorithm, we chose the following
topology for G: Let each server rack be connected to
its immediately adjacent server racks and to the server
rack with same label in the other cold aisle. Server racks
labelled “1” and “7” are connected to server racks di- 35

rectly opposite them across the cold aisle (that is, “8”
and “14” respectively). Clearly, this results in G being a
connected, undirected (3-regular) graph. As can be seen
from Figure 10, even in this non-ideal scenario, Algo-
rithm 2 still manages to, more or less, equalise the tem- 40

peratures across server racks. Note finally that this sim-
ulation is not Matlab based but rather a full scale CFD
simulation.

4 Conclusions

Thermal management is an important aspect in the ef- 45

ficient operation of data centres. The relationship be-
tween demand and temperature is a complicated one so
a robust distributed algorithm is useful in the dynamic

8



environment of the data centre. In this paper, we have
shown that distributed algorithms can be used to reduce
cooling costs in certain types of data centres. A 6.5% re-
duction in the cooling costs which represents savings of
tens of thousands of dollars annually can be achieved.5

Future work will explore learning automata ideas in the
context of more general data centres.
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