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This paper is concerned with a class of decentralised control problems that arise in contemporary applications
where agents cooperate to control and regulate a global quantity, are limited in the manner in which they
communicate with each other, and are required to reach consensus on some implicit variable (for example, CO2

emissions). Three algorithms are presented for achieving this goal. The convergence of these algorithms are
proven, and their efficacy is demonstrated in simulations.
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1 Introduction

Survey papers such as Olfati-Saber et al. (2007), Ren et al. (2005) and the wealth of work pub-
lished in the recent past reflect the large amount of interest in coordination, cooperation and
consensus in multi-agent systems. As we shall see in the literature review at the end of this in-
troduction, most of the previous work assumes bi-directional communications (undirected com-
munication graphs) between agents, often does not cater for time changing topologies in the
communication network and, in some cases, does not consider dynamics (or only very specific
types of linear dynamics for specific applications) involved in state changes. Most importantly,
however, while many consensus schemes will correctly produce a consensus, it appears little work
has been done to use this consensus value to achieve a common goal. Namely, in many appli-
cations, the aggregate behaviour of the system (assumed to depend on all the network’s states)
is of interest as well, and a certain amount of cooperation between the agents in the network is
desired in order for the network to achieve a common goal (“cooperative control”).

In the present paper we not only try to be free of the above-mentioned pre-assumptions common
in the literature, but aim at additionally influencing the consensus value reached in order to meet
a global objective. We use an external input into the consensus protocol to regulate the consensus
value according to a global performance measure (or global value) that depends on the entirety
of the network’s states. In other words, we would like to develop decentralised protocols and
algorithms that allow a network to reach consensus on one quantity of interest, while additionally
meeting a separate, global goal. The main contributions of this paper will be three algorithms
that achieve this objective, operating in a variety of settings where certain key properties of the
network may or may not be known a priori, and where different amounts of information and
communication is available to the nodes.

∗Corresponding author. Email: florian@knorn.org
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1.1 Motivating examples

Let us give two potential applications as motivating examples for our work. First, consider a
network of cars driving around in a city where the city council is trying to implement some
form of emission control. The global objective would be that the aggregate emissions of all cars
participating in the scheme do not exceed a prescribed level. Fairness dictates that no car should
be allowed to pollute more than others, so the cars should adjust their behaviour so that they
all produce the same CO2 emissions (in other words, reach consensus on the emissions). But
assuming that the emissions are a direct function of the cars’ speed (and that different cars
have different efficiency levels, depending on their weight, engine, etc.) some cars may be able
to drive faster than others for a given level of emission. In order to implement the emission
control scheme, the council may place a number of monitoring units around the city to measure
the overall emission level and broadcast that (global) information to all the cars in the network,
along with the value of the desired or allowable emission level. Clearly, the cars need to cooperate
to achieve the desired emission level. For that, we assume that the cars are able to broadcast
their own emission level to vehicles in their vicinity. The so-established communication network
can then be used to reach a consensus among the cars on a common emission level. Additionally,
incorporating the information from the global broadcast, the cars should now be able to adjust
their speed (e.g. by using penalties for cars exceeding the resulting speed threshold or confining
cars to different lanes with different speeds) so that the resulting emissions match those of other
cars in the network, and also so that the overall emissions produced throughout the city reach
the admissible level. To highlight some of the particularities of this setting, we note that the
topology of the resulting communication network would be constantly changing as the cars drive
around and move in and out of range from each other; the communication network will not
necessarily be symmetric — some cars may not be able to broadcast as far as others, or some
of the transmissions may be lost; and the dependence of emissions on the car speed will be
non-linear.1

A second example is a wireless sensor network. Assume that a number of battery powered
motes are dropped roughly uniformly distributed over a defined area. The (usually identical)
motes would be equipped with a battery, a radio, one or more sensors and some kind of processing
unit. The objective would be to adjust the broadcast power of their radios so that the network
reaches a prescribed level of (algebraic) connectivity, but also so that all nodes last equally long
in terms of battery power. The first objective would be important for certain types of algorithms
whose rate of convergence depends on the algebraic connectivity of the graph they evolve on, and
the second objective guarantees maximum life-time of the network without node failures (due to
power shortage). Clearly, the power used by the radio directly influences the time-to-live (TTL)
of a node. However, the overall power consumption may vary among nodes depending on their
individual workload, and the batteries may also have slightly varying initial charges. Assuming
that the radio is the biggest power consumer in each mote, they will be able to influence their
TTL by varying the power setting of their radios. But now, depending on the power used, each
node can broadcast information to more or fewer nodes in its vicinity. As different nodes will
use different power settings, the resulting topology of the communication graph will generally
be asymmetric, and changing over time. In this setting, we would like to find a decentralised
algorithm that adjusts the node’s power setting so that all nodes eventually have equal TTLs, but
additionally guaranteeing a certain algebraic connectivity level of the resulting communication
network. As reported in Knorn et al. (2009), there are decentralised algorithms that can be used
to estimate the global connectivity level of a graph, so contrary to the previous example no
external broadcast of the global quantity of interest would be needed.

1For reasons of simplicity we assume, however, a monotonic relationship between speed and emission levels, as would roughly
be the case for cars with continuously variable transmissions (CVT), i. e. modern gear boxes with no “discrete” gears.
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1.2 Our contributions

These are just two situations where the objective is twofold — reaching consensus on a local
utility value that depends on the physical state of each node, combined with an additional global
criterion to be met. Naturally, depending on the application, different amounts of information
will be available to the network designer, and later the implemented network. For instance, there
will be cases where not all the nodes have access to the value of the global quantity, or the
relationship between physical state and the utility value may only be known approximately. The
scenarios will also be different whether nodes can adjust their state and the utility value directly
(i. e. infinitely fast), or only with certain dynamics. In this paper we will present three different
decentralised algorithms that are designed to achieve the objectives in three different situations.

(1) Physical state: No dynamics involved, can be changed directly.
Utility functions: Must be perfectly known.
Global value: All nodes must have access.

(2) Physical state: No dynamics involved, can be changed directly.
Utility functions: Lower and upper growth bounds must be known.
Global value: Not all nodes must have access.

(3) Physical state: Dynamics may be involved in state change.
Utility functions: Only approximate knowledge required, can be filtered values.
Global value: Not all nodes must have access.

Additionally, in each case the underlying communication network can be directed and time vary-
ing, both the utility functions as well as the global quantity’s dependence on the network states
can be non-linear, and the state updates in the network must not necessarily be performed
synchronously (in other words, asynchronous communications are covered by our approach as
well).

1.3 Previous work

As mentioned above, much work has recently been done in the field of consensus and coordination
in multi-agent systems. For a great introduction into the field and examples of its many, diverse
applications see for instance the surveys by Olfati-Saber et al., Olfati-Saber et al. (2007), and Ren
et al., Ren et al. (2005), as well as the collection of references at Reynolds (2001). The general
problem of consensus finding can come in many “flavours” depending on the application. These
variations include whether the topology of the communication graph remains fixed or changes over
time; it is undirected or directed; the agents can manipulate the state on which to reach consensus
instantly or only with certain dynamics; if each node’s state is scalar or multidimensional; whether
there are delays in the information exchange; or if all nodes update their states in a synchronous
fashion or on their own pace. While initial work Borkar and Varaiya (1982), Tsitsiklis (1984),
Tsitsiklis et al. (1986), Reynolds (1987), Vicsek et al. (1995) on consensus and coordination was
based on bi-directional information exchange between neighbouring nodes (leading to undirected
communication graphs) with rigorous convergence proofs given in Jadbabaie et al. (2003), this has
been extended to include directed communication graphs for instance in Olfati-Saber and Murray
(2004), Moreau (2005), Ren and Beard (2005), Fang et al. (2005), Beard and Stepanyan (2003).
Another generalisation allowed asynchronous consensus protocols so that not all nodes had to
perform state updates at the same instant, Olfati-Saber and Murray (2004), Fang et al. (2005),
Cao et al. (2006), Hatano and Mesbahi (2005), Blondel et al. (2005). Closely related was the
work that also considered changing graph topologies, Jadbabaie et al. (2003), Ren and Beard
(2005), Tanner et al. (2003b), Olfati-Saber (2006), Beard and Stepanyan (2003). Further gener-
alisations of the problem allowed the inclusion of agent dynamics (typically linear, second order
systems) in the consensus problem, Tanner et al. (2003a,b), Olfati-Saber and Murray (2003),
Olfati-Saber (2006), which play an important role in networks of mobile agents that move with
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finite dynamics. In some situations the consensus variable may not be directly altered by the
nodes, but only implicitly. Such a situation is dealt with in Stanojević and Shorten (2008, 2009).

However, most of these papers only focus on so-called unconstrained consensus applications.
When the consensus, that the system is to reach, should fulfil external conditions (such as a
common heading of a flock of agents, but in a particular direction), three approaches are usually
taken, see Beard et al. (2001), Lawton et al. (2003), Ren and Beard (2004) and citations therein:
leader-following (Wang 1989, Singh et al. 2000, Mesbahi and Hadaegh 1999, Fax and Murray
2004, Ji et al. 2006), virtual structure based (Lewis and Tan 1997, Beard et al. 2000, Shi et al.
2005) or behaviour based (Balch and Arkin 1998, Anderson and Robbins 1998, Lawton et al.
2003, Parker 1998, Chen and Luh 1994, Veloso et al. 2000) approaches. The first concept presents
a common technique used typically to make formations of autonomous mobile agents follow
desired trajectories. However, the problem with these architectures is usually that they not only
depend heavily on the leader, but it appears that little discussion of the case where the leader
adjusts its state based on feedback of the totality of the states of the network has taken place,
and most of the systems dealt with in that context are linear.

In the virtual structure approach, the entire network of agents is treated as a single entity,
the virtual structure. The desired behaviour is then assigned to the virtual structure relative to
which each member controls its own behaviour.

In the behavioural approach, each agent’s behaviour is based on a weighted sum of a number of
desired behaviours, such as goal seeking, formation keeping, obstacle and collision avoidance, etc.
A typical application of these techniques are rendez-vous problems with obstacle and collision
avoidance, where the agents are to meet in a certain place, but avoid running into obstacles or
crashing into each other during the approach.

It is in this third class that our work could be placed, as the desired behaviour of the nodes in
our network is also a combination of localised constraints (consensus on the utility values) and
global constraints.

1.4 Structure of this paper

The remainder of the paper is structured as follows: The next section will introduce the problem
setting more concretely and define some necessary notation. This is followed by three algorithms
(together with a number of comments and simulations) which form the main contributions of the
paper. Finally, after extending our results to the case of asynchronous communications, we will
draw some conclusions, discuss open questions and suggest some future directions.

2 Overall setting

2.1 Problem setting

Concretely, we consider the following situation. In a network with n > 1 agents or “nodes” and a
number of directed communication links1 that may change over time, each node i has a physical
state (or just “state”) that it can change, either directly or indirectly through certain dynamics.
Furthermore, associated to each node is also what we call a utility value: This value directly
depends on the node’s physical state and represents some particular quantity of interest that is
somehow related to, but usually different from, the physical state. This dependence is given by
each node’s utility function, which is generally assumed to differ between nodes.

Additionally, we define a certain global value that depends directly on all the nodes’ phys-
ical states through the global function. By suitable means of communication (or decentralised

1This could be due to each node broadcasting information about its state at regular intervals, and other nodes in proximity
picking up this broadcast — but these nodes do not necessarily have to communicate back.
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estimation) either all or just some nodes in the network have access to this global value.2 Fi-
nally, we assume that the agents (locally) share their current utility value through (directed)
communication links. This set-up is illustrated in Figure 1.
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Figure 1. The basic setting.

2.2 Problem statement

The objective is now for all nodes in the network to reach consensus on their utility values, while
also, jointly, driving the global value to a prescribed, “desired” value. This should be achieved in a
fully decentralised way, using simple algorithms that will operate in a variety of settings, including
non-linear utility functions that are only known approximately, when not all nodes have access
to the global value and when the state updates are not necessarily performed synchronously.

In order to solve this problem, the three results given in this paper present recursive update rules
for each node’s physical state. These update rules share the same basic idea: Use classic consensus
techniques together with an additional term that takes into account the global objective.

2.3 Notation

Throughout, we use superscripts in parentheses to denote individual elements in a vector or
matrix, and subscripts (usually) denote the time index. Vectors and matrices are typeset in bold
letters to improve readability. We use 1 resp. 0 to denote the all ones resp. zero vector or matrix
of appropriate dimension; ei defines the ith unit vector of appropriate dimension.

The standard situation we will be interested in in this paper is best described using typical
notions from graph theory. Let V = {1, . . . , n} be the vertex set of the network and let Ek ∈ V×V
be the edge set representing the (directed) communication links at time k = 0, 1, . . . between the
nodes. The overall directed graph describing the communication structure of the network at time
k is the pair Gk = (V, Ek), where we explicitly assume that the communication links may change

over time, but not the node set. The set of (in-)neighbours of node i is called N
(i)
k ; it contains

2That is, either the global value can be measured or estimated locally by the nodes, or it will be communicated to them
by some form of “external” broadcast (for instance sent from some form of base station that itself can estimate or measure
that value).
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all the nodes j that can send information to node i, i. e. N
(i)
k = { j | (j, i) ∈ Ek }. We say that Gk

is the graph of a non-negative square matrix S if for each j 6= i, s(ij) 6= 0 if and only if j ∈ N
(i)
k .

The network is called connected (in the literature also referred to as strongly connected) if there
exists a path from every node to every other node in the network, respecting the orientation of
the edges. This is the case if and only if the adjacency matrix is irreducible, (Horn and Johnson
1985, Th. 6.2.24). We shall either assume in the following that all networks dealt with are strongly
connected, or if this is not the case, we use the concept of joint connectivity: A set of graphs is
called jointly strongly connected if the union of those graphs is strongly connected.1

A matrix P ∈ Rn×n is called row-stochastic if all its entries are non-negative and all its row-
sums equal one, in other words p(ij) ≥ 0 and P1 = 1. Similarly, row sub-stochastic matrices are
defined to be real valued, non-negative matrices whose row-sums are less than or equal to one
(but with at least one row-sum strictly less than one). A strictly row sub-stochastic matrix is a
row sub-stochastic matrix where all row-sums are strictly less than one.

Let r
(i)
k ∈ R be the physical state of node i at time k where k = 0, 1, . . . , so that rk forms the

state vector of the network. Node i’s utility value t(i) ∈ R depends on the physical state via a

continuous and strictly increasing utility function f (i) : R → R, that is t
(i)
k = f

(i)(
r
(i)
k

)
. Further

properties of the utility functions (such as invertibility) will be assumed where necessary. Note
that for convenience we will often write the utility functions in vector form, i. e. we use rk = f(tk)

to represent t
(i)
k = f

(i)(
r
(i)
k

)
for each i. Furthermore, let g : Rn → R be a global function that

depends on all the states, which we assume to be element-wise strictly increasing. Desired values
are usually denoted with subscript asterisks, so that, for example, the desired value for the global
function is always denoted by g∗. Based on this desired value, the solution to the problem thus

consists of a vector r∗ for which f
(i)(

r
(i)
∗

)
= t∗ for all i and g(r∗) = g∗.

2.4 Growth conditions

Throughout we shall assume that the utility functions and the global function are continuous
and satisfy the following growth conditions: There are positive constants d(i), d̄(i), h(i), h̄(i) such
that for all i = 1, . . . , n

d(i) ≤
f (i)(ra)− f (i)(rb)

ra − rb
≤ d̄(i) for all ra, rb ∈ R with ra 6= rb (1a)

h(i) ≤
g(r +∆rei)− g(r)

∆r
≤ h̄(i) for all r ∈ Rn and all ∆r ∈ R with ∆r 6= 0 (1b)

Loosely speaking, the growth conditions require the utility functions to be strictly increasing
with a rate that is bounded away from zero and upper bounded; the global function must also
be strictly increasing with a non-zero but also upper bounded rate coordinate-wise.

2.5 Feasibility

The conditions on the continuous utility functions guarantee that they are strictly monotone
increasing and unbounded; hence each utility function has a continuous inverse φ(i); thus

φ(i)
(
f (i)(r)

)
= r and f (i)

(
φ(i)(t)

)
= t (2)

1The union of a set of graphs on a common vertex set is defined as the graph consisting of that vertex set and whose edge
set is the union of the edge sets of the constituent graphs.
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for all t, r ∈ R. We let φ(t) =
[
φ(1)(t(1)) , . . . , φ(n)(t(n))

]
T
. Thus φ is the inverse of f . If t = t∗1

then

g
(
φ(t)

)
= g(φ(t∗1)) =: θ(t∗) (3)

In order for our problem to have a solution, it is necessary and sufficient that the equation
θ(t∗) = g∗ has a solution for t∗ for all g∗, that is, the function θ is indeed invertible.

When a solution for t∗ exists, the solution for the state vector is given by r∗ = φ(t∗1). We
now show that, as a consequence of the growth conditions, the function θ is invertible. Using the
result in Appendix A, we obtain that, for any ta, tb ∈ R,

θ(ta)− θ(tb) = g
(
φ(ta1)

)
− g

(
φ(tb1)

)
=

n∑

i=1

c(i)(ta − tb) where
h(i)

d̄ (i)
≤ c(i) ≤

h̄(i)

d(i)
(4)

From this it follows that θ satisfies the growth condition

0 < c ≤
θ(ta)− θ(tb)

ta − tb
≤ c̄ for all ta, tb ∈ R with ta 6= tb (5)

where

c =

n∑

i=1

h(i)

d̄ (i)
and c̄ =

n∑

i=1

h̄(i)

d(i)
(6)

Satisfaction of the above growth condition implies that θ is invertible, hence, our problem always
has a unique feasible solution.

With all these definitions given, we are now ready to present the main contributions of this
paper. At the heart of each of the algorithms presented in the following sections will be a recursive
update law according to which the nodes are to adjust their physical state. We would like to
emphasise the fact that these update laws indeed represent a decentralised approach — they
only require locally available information from neighbouring nodes, and the global term (which
is assumed, ideally, to be estimated in a decentralised fashion as well).

3 Algorithm 1: Complete information

The first algorithm provides a control law that will be suitable for situations where the utility
functions are invertible functions and are perfectly known to the designer. Also, the value of the
global function must also be accessible to all nodes at all times.

The idea then consists of running a classical consensus scheme directly on the utility values
with an additional global term added at each node. The actual state update is then calculated
from these new utility values using the inverse utility function.

Theorem 3.1 : Consider the standard situation as described in the Notation section and assume
that the utility functions f (i) and the global function g are continuous and satisfy the growth
condition. Furthermore, assume that each node, using the inverse of its utility function, can
calculate its physical state corresponding to a particular utility value.
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For any initial condition rk=0 = r0 ∈ R
n, and any sequence of strongly connected communica-

tion graphs, suppose that the nodes iteratively update their physical states based on

t
(i)
k+1 = t

(i)
k + η

∑

j∈N
(i)
k

(

t
(j)
k − t

(i)
k

)

+ µ
(
g∗ − g(rk)

)
(7)

r
(i)
k+1 = φ(i)

(
t
(i)
k+1

)
(8)

for some

0 < η <
1

n− 1
and 0 < µ <

2

c̄
(9)

Then, the physical state vector rk converges asymptotically to the vector r∗ for which f (i)
(
r
(i)
∗

)
=

t∗ for all i and g(r∗) = g∗.

Proof The control equation (7) can be expressed as

tk+1 = Sktk + µ
[
g∗ − g

(
φ(tk)

)]
1 (10)

where

s
(ij)
k =







1−
∑

j∈N
(i)
k

η if j = i

η if j ∈ N
(i)
k

0 otherwise

(11)

Clearly Sk is a row-stochastic matrix. The bounds in (9) on η guarantee that, for all i, the

elements s
(ii)
k and s

(ij)
k are positive for j ∈ N

(i)
k . Thus the graph corresponding to Sk is the

(strongly) connected communication graph at time step k; this implies that Sk is irreducible.
Furthermore, since the main diagonal entries of Sk are all strictly positive, this matrix is primitive,
(Horn and Johnson 1985, Lem. 8.5.5). Noting that the number of strongly connected graphs on
n nodes is finite, it follows that all the Sk matrices are contained in a finite set.

Having shown these properties of the Sk matrices we can now apply Theorem 4.1 of Knorn et al.

(2009) which guarantees that t
(i)
k − t

(j)
k → 0 as k grows. This implies that the evolution of each

utility t(i) will eventually be described by

t̄k+1 = t̄k + µ
[
g∗ − g

(
φ(t̄k1)

)]

︸ ︷︷ ︸

=:ψ(t̄k)

(12)

It is well know that such one-dimensional iterated maps have a unique and globally asymptotically
stable fixed point t∗ = ψ(t∗) if

∣
∣
∣
∣

ψ(ta)− ψ(tb)

ta − tb

∣
∣
∣
∣
≤ β < 1 (13)

for any ta, tb ∈ R and ta 6= tb, Hilborn (1994). So let us determine suitable bounds for µ so that
the above inequality is satisfied and the system will indeed converge to a fixed point. Considering
any ta, tb ∈ R with ta 6= tb, we have

ψ(ta)− ψ(tb) = ta − tb − µ
[
θ(ta)− θ(tb)

]
(14)
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where θ(t) = g
(
φ(t1)

)
. We have already shown that

0 < c ≤
θ(ta)− θ(tb)

ta − tb
≤ c̄ (15)

from which the following bounds can be established

1− µc̄ ≤
ψ(ta)− ψ(tb)

ta − tb
≤ 1− µc < 1 (16)

Thus, condition (13) holds if 1 − µc̄ > −1, that is, µ < 2/c̄ which is one of the hypotheses of
the theorem. Convergence of the one-dimensional system (13) to t∗ corresponds to all the utility
values of all nodes converging to the same value t∗; since ψ(t∗) = t∗ can only be the case if

g
(
φ(t∗1)

)
= g∗, we obtain the result that g(r∗) = g∗ where r

(i)
∗ = f (i)(t∗), i. e. the original

system converges to the desired solution. �

3.1 Remarks

Our first result can be seen as a direct generalisation of the work reported in Knorn et al. (2009):
On the one hand, the algorithm presented here allows the inclusion of utility functions, and on
the other the global term can be taken from a class of functions rather than one specific, concrete
function stemming from the particular application Knorn et al. (2009) was focusing on.

The control law (7) has two components: One aimed at achieving consensus on the utility values,
the other at regulating the global value. In order to make this control law easier to understand and
implement we suggested a very specific form for the consensus achieving part — it only involves
one parameter (the gain η) together with the summation over the differences between a node’s
own utility value and those of its neighbours. As we stated earlier, the bounds on the gain η are
used to make sure that this formulation results in primitive row-stochastic averaging matrices
Sk so that we can apply Theorem 4.1 of Knorn et al. (2009). Clearly, this specific formulation
does not necessarily have to be used. In fact, Theorem 4.2 of the same publication also provides
the required contraction property but for a much broader class of averaging schemes.

The theorem requires a very precise setting where perfect knowledge of the utility functions
(and their inverses in particular) is required. Additionally, every node needs to have access to
the value of the global term which may not be possible in all applications. In that regard, the
algorithm and its generalisation in the next section requires weaker assumptions on the setting
and thus is relevant to a much larger class of applications.

3.2 Simulations

To produce time varying graphs for our simulations, we made use of random geometric graphs
with time varying connection radii (or distance parameters), see Penrose (2003), Santi (2005). A
geometric graph is created by distributing nodes over a defined area (typically, the unit square
is used), associating a connection radius to each node i and then connecting it to all the nodes j
that lay within node i’s connection radius (which could be thought of as a “broadcast radius”, that
is an area within which other nodes j can receive information from node i). In all the examples
here, each node’s physical state is interpreted as its connection radius,1 and thus, as the states
change so will the network’s topology. All examples use graphs with n = 25 nodes.

The global and utility functions used for the simulation of Algorithm 1 were of the quadratic
type, see Appendix B and Fig. B1. For these functions it is straightforward to determine the

1However, if a state is less than 0 or larger than 1.5, it is interpreted as 0 or 1.5 respectively to determine the graph topology.
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growth-bounds as required by the theorem and calculate the bounds on the gains µ and η used
in the update equation.

t

Time step k

r

g(r)

0 5 10 15 20 25 30 35 40 45 50

0.25

0.45

0.65
51

53

55

1.8

2.4

3

Figure 2. Simulation of Algorithm 1.

Figure 2 shows the results for a desired global value of g∗ = 54, when the network was initialised

with a common physical state of r
(i)
0 = 0.35 for i = 1, . . . , 25. The subplots show the evolution

over time of the value of the global term (with the desired value marked by the dashed line), the
physical states and the utility values, respectively. As can be seen, the network quickly reaches
consensus on the utility values. The general increase in the physical state values is driven by the,
initially, lower than desired global value, which then pushes the global value towards its target
value. The physical states (interpreted as the connection radii for the underlying communication
graph) remained large enough for the network to be strongly connected in each time step.

4 Algorithm 2: Partial information

4.1 Simple form

In this section we present a second, more general algorithm for consensus and cooperative control
of a global goal. The implementation of this method only requires limited knowledge of the utility
functions as well as the global function. Also, as shown later, it can be easily extended to be able
to deal with situations where not all nodes have access to the global term and where the commu-
nication network is not necessarily strongly connected (that is, asynchronous communications or
a certain amount of communication failures can be tolerated).

Theorem 4.1 : Consider the standard situation as described in the Notation section and assume
that the utility functions f (i) and the global function g are continuous and satisfy the growth
condition. For any initial condition rk=0 = r0 ∈ R

n and any sequence of strongly connected
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communication graphs, suppose that the nodes iteratively update their physical states based on

r
(i)
k+1 = r

(i)
k +

∑

j∈N
(i)
k

η
(ij)
k

(

t
(j)
k − t

(i)
k

)

+ µ
(i)
k σk (17)

where

σk =

{

g∗ − g(rk+1−M ) if k+1 is a multiple of M := n− 1

0 otherwise
(18)

and there exist constants ε1, ε2, µ, µ̄ > 0 such that

η
(ij)
k ≥ ε1 for j ∈ N

(i)
k , and

∑

j∈N
(i)
k

η
(ij)
k ≤

1

d̄(i)
− ε2 (19)

and

0 < µ ≤ µ
(i)
k ≤ µ̄ (20)

Then, if µ̄ > 0 is sufficiently small, the state vector rk converges asymptotically to the vector r∗

for which f
(i)(

r
(i)
∗

)
= t∗ for all i and g(r∗) = g∗.

Proof Using the growth properties of the utility functions, we have

t
(i)
k+1 − t

(i)
k = d

(i)
k

(

r
(i)
k+1 − r

(i)
k

)

where 0 < d(i) ≤ d
(i)
k ≤ d̄(i) . (21)

Hence, multiplication of update law (17) by d
(i)
k results in

t
(i)
k+1 = t

(i)
k + d

(i)
k

∑

j∈N
(i)
k

η
(ij)
k

(

t(j) − t(i)
)

+ d
(i)
k µ

(i)
k σk (22)

that is,

t
(i)
k+1 = s

(ii)
k t

(i)
k +

∑

j∈N
(i)
k

s
(ij)
k t(j) + d

(i)
k µ

(i)
k σk (23)

where

s
(ij)
k =







1− d
(i)
k

∑

j∈N
(i)
k

η
(ij)
k if j = i

d
(i)
k η

(ij)
k if j ∈ N

(i)
k

0 otherwise

(24)

Using the result in Appendix A again, we obtain that

g∗ − g(rk+1−M ) = g
(
φ(t∗)

)
− g

(
φ(tk+1−M )) =

n∑

i=1

c
(i)
k

(
t
(i)
∗ − t

(i)
k+1−M

)
(25)
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where

0 <
h(i)

d̄(i)
≤ c

(i)
k ≤

h̄(i)

d(i)
(26)

This allows us to rewrite Equation (22) as

tk+1 =

{

Sktk − µ̄Qk(tk+1−M − t∗) if k+1 is a multiple of M

Sktk otherwise
(27)

where, for each i = 1, . . . , n,

q
(ij)
k = µ

(i)
k d

(i)
k c

(j)
k

/
µ̄ (28)

Since Skt∗ = Sk1t∗ = 1t∗ = t∗, we subtract t∗ from both sides of (27) and define ∆tk := tk−t∗
to get the following reformulation of (17)

∆tk+1 =

{

Sk∆tk − µ̄Qk∆tk+1−M if k+1 is a multiple of M

Sk∆tk otherwise
(29)

We can now use this expression to show that ∆tk converges to the zero vector — which, of course,
implies that the states converge to the desired solution of the problem.

If the system starts at k = 0 then, after M iterations, Eq. (29) results in

∆tM =

=:S̄0
︷ ︸︸ ︷

Sn−2Sn−3 . . .S0 ∆t0 − µ̄Qn−2∆t0 (30)

=
(
S̄0 − µ̄Qn−2

)

︸ ︷︷ ︸

=:Z0

∆t0 (31)

and after another n−1 steps

∆t2n−2 = S̄1∆tn−1 − µ̄Q2n−3∆tn−1 (32)

= Z1∆tn−1 (33)

In general, for l = 0, 1, . . . , we have

∆t(l+1)M = Zl∆tlM (34)

where

Zl = S̄l − µ̄Q(l+1)M−1 and S̄l = S(l+1)(n−1)−1 . . .Sl(n−1) (35)

The evolution of the ∆tk vectors is thus governed by the product of Zl matrices, at which we
must hence take a closer look.

To this end, we first show that the S̄l matrices are row-stochastic and positive. To do this
we first show that the Sk matrices are primitive and thus fully indecomposable row-stochastic
matrices whose non-zero elements are uniformly bounded away from zero. It is clear from (24)
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that Sk is a row-stochastic matrix. Now note that

s
(ii)
k = 1− d

(i)
k

∑

j∈N
(i)
k

η
(ij)
k ≥ 1− d̄(i)

∑

j∈N
(i)
k

η
(ij)
k ≥ d̄(i)ε2 > 0 (36)

Also, when j ∈ N
(i)
k we have

s
(ij)
k = d

(i)
k η

(ij)
k ≥ d(i)ε1 ≥ dε1 > 0 (37)

where

d := min
i

{
d(i)

}
and d̄ := max

i

{
d̄(i)

}
(38)

The above positive lower bounds on the elements s
(ij)
k for j ∈ N

(i)
k imply that the graph cor-

responding to Sk is the (strongly) connected communication graph at time step k. Since the
diagonal elements of Sk are positive this implies that Sk is primitive, (Horn and Johnson 1985,
Lem. 8.5.5). Applying (Brualdi and Ryser 1991, Th. 4.2.3) we can thus note that Sk is fully
indecomposable for all k. However, a product of the n−1 fully indecomposable n × n matrices
yields a strictly positive matrix, (Hartfiel 2002, Cor. 2.5), and hence the S̄l are all strictly positive
(row-stochastic) matrices.

We now obtain a lower bound on the elements of every S̄l. It follows from (36) and (37) that

the non-zero elements s
(ij)
k of Sk must satisfy

s
(ij)
k ≥ smin where smin := min

{

dε1, d̄
(1)ε2, . . . , d̄

(n)ε2

}

(39)

Since each element of S̄l is the sum of a number of positive terms, where each term is the product
of at most M elements of Sk matrices, and smin ≤ 1, we must have

s̄
(ij)
k ≥ (smin)

M =: s̄min (40)

for all i, j and k.
Regarding the Qk matrices, it follows from (28) that, for all k,

0 < d

(
µ

µ̄

)
h(j)

d̄ (j)
≤ q

(ij)
k ≤ d̄

h̄(j)

d(j)
(41)

or

0 < qmin ≤ q
(ij)
k ≤ qmax (42)

where

qmin := d

(
µ

µ̄

)

min
i

{
h(i)

d̄ (i)

}

and qmax := d̄max
i

{
h̄(i)

d(i)

}

(43)

Thus, provided

0 < µ̄ ≤
s̄min

qmax
=

(smin)
M

qmax
(44)
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every Zl matrix will be non-negative; furthermore, since S̄l is row-stochastic the row sum of
every row of Zl will be bounded above by

κ := 1− µ̄qmin < 1 (45)

This implies that the Zl matrices are strictly row sub-stochastic and thus satisfy

‖Zl∆t‖∞ ≤ κ‖∆t‖∞ where ‖∆t‖∞ = max
i

{
|∆t(i)|

}
(46)

It now follows from (34) that

‖∆t(l+1)M‖∞ ≤ κ‖∆tlM‖∞ (47)

for all l; hence

‖∆tlM‖ ≤ κl‖∆t0‖∞ (48)

Since each Sk matrix is non-negative and row-stochastic, it satisfies ‖Sk∆t‖∞ ≤ ‖∆t‖∞; hence

‖∆tk‖∞ ≤ κl‖∆t0‖∞ when lM ≤ k ≤ (l + 1)M − 1 . (49)

Thus ∆tk converges to zero as k goes to infinity. This concludes the proof of Theorem 4.1. �

4.2 Simulations of Algorithm 2

For the simulations of the algorithm based on Theorem 4.1 we used piecewise linear utility
functions, and the global function was selected to be of affine form, see again Appendix B and
Fig. B1(b). The parameter bounds were again chosen within certain bounds to produce the
growth-bounds as required by the theorem.

As described in Theorem 4.1, the states only incorporate the value of the global term every
n − 1 = 24 time steps. These updates are marked by the dashed, vertical lines in the second
subplot of Figure 3.

While in each time step the averaging scheme pulls together the utility values, each update with
the global term pulls them apart again (but brings the global value closer to its desired value).
As the targeted value is approached, however, the influence of the global term gets smaller and
smaller and eventually the averaging scheme brings a “lasting” consensus to the utility values, at
a point where the global term has reached the desired value.
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r

Time step k

t

g(r)
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0.57

0.59

0.61

Figure 3. Simulation of Algorithm 2.

4.3 When not all nodes have access to the global term

The previous result assumes that all nodes always have access to the global value. In order to
make our results more relevant to actual applications, where this assumption may not always be
practical or possible to guarantee (for instance in the presence of communication failures), we
provide the following corollary to Theorem 4.1. It relaxes the assumption to the more general
setting where not all nodes must have access to the global term. In fact, it is sufficient for only
one node to have access to the global value. This “special” node could be placed in a strategic
place to measure or receive the global value from an external source.

To model this more general scenario, consider any time step k where the global term g(rk+1−M )
is needed and let Ik ⊆ {1, . . . , n} be the non-empty set of nodes which incorporate the global
term in their state update at time k. Then, recalling the original algorithm in (17), the more
general algorithm under consideration is modelled by

r
(i)
k+1 = r

(i)
k +

∑

j∈N
(i)
k

η
(ij)
k

(

t
(j)
k − t

(i)
k

)

+ µ
(i)
k σ

(i)
k (50)

where

σ
(i)
k =

{

g∗ − g(rk+1−M ) if k+1 is a multiple of M = n−1 and i ∈ Ik
0 otherwise

(51)

for all k = 0, 1, . . . . We have now the following result.

Corollary 4.2: The results of Theorem 4.1 still hold when not all, but at least one node includes
the global term in the state update whenever it is required.
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Proof The proof of the corollary is almost identical to that of Theorem 4.1; only some small
modifications are needed. Proceeding as in the proof of Theorem 4.1, the algorithm can still
be described by (29) where Sk is the same as before and the rows of Qk corresponding to the
nodes which update with the global term at k are the same as before; however the rows of Qk

corresponding to those nodes which cannot incorporate the global term at k are zero. Thus Qk

is not necessarily strictly positive. However, since the assumptions of the corollary guarantee at
least one positive row, the Zl matrices defined in (35) will still be row sub-stochastic but not
necessarily strictly row sub-stochastic (as they were under the hypotheses of Theorem 4.1).

However, as we show now, products of the form Zl+1Zl are strictly row sub-stochastic. To
this end suppose that A,B ∈ Rn×n are positive, row-stochastic or row sub-stochastic matrices,
and at least one row-sum in B is strictly less than one. We show that then the product AB

must be strictly row sub-stochastic. Let b = B1 and w = AB1 be the vectors containing the
row-sums of B and the product AB respectively. Since B is row-stochastic or sub-stochastic,
we have b(j) ≤ 1 for all j and, by assumption, there is at least one j0 for which b(j0) < 1. Since
w = AB1 = Ab, it follows from the definition of the matrix product that for each i = 1, . . . , n,
w(i) =

∑n
j=1 a

(ij)b(j). As all elements in A are positive,
∑n

i=1 a
(ij) ≤ 1, b(j) ≤ 1 for all j and

b(j0) < 1, we must have

w(i) =

n∑

j=1

a(ij) −
n∑

j=1

a(ij)(1− b(j))

≤ 1− a(ij0)(1− b(j0))

< 1 (52)

In other words, the product AB is strictly row sub-stochastic.
Using (34) we obtain that for l = 0, 2, 4, . . . ,

∆t(l+2)M =
(
Zl+1Zl

)
∆tlM (53)

Since the elements of each matrix Zl are uniformly bounded away from zero and each matrix has
at least one row whose sum is uniformly bounded above by a number less than one, it follows
that the matrix product Zl+1Zl is positive, strictly row sub-stochastic with row sums uniformly
bounded above by some κ < 1. As demonstrated in proof of Theorem 4.1, one can now prove
again convergence of ∆tk to zero. This concludes the proof of the corollary. �

Simulations of Algorithm 2 where only a small number of nodes have access to the global value
are given at the end of Section 6. We shall now move on to our third main result.

5 Algorithm 3: Dynamics and controllers

While the third proposed algorithm shares some similarities with the previous two, it differs
conceptually from them in that it is more abstract, modular and allows different nodes to use
different controllers to adjust their physical state. In fact, the combination of controller and utility
function (the “control loop”) may even have a dynamic behaviour, and can be heterogeneous (that
is, different nodes may use completely different controller types or utility functions).

The following approach can be interpreted as “decoupling” the adjusting of the physical states
(control action) from the (iterative) calculation of “desired utility values”, designed to converge to
the actual solution of the problem. As is the case with the previous two algorithms, this algorithm
is also intended to be implemented in a fully decentralised way.

Concretely, we envisage the following structure: First, in a distributed averaging step the
current utility values are averaged using some distributed averaging scheme. To this, if k is
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A

Distr. averaging

t̃

t

+

+
g∗

−

Glob. function

g(r)
gg

+

σ

µ

t̃

−

+

e

Controllers & plants

u

C(z) P(z)
r

r(i)

t(i)
Utility fcts.

t

Calculation of t̃

k

Control of r

Figure 4. Illustration of the interplay of calculation of the target utility values t̃ and the control action to adjust the
physical states r accordingly.

a multiple of M = n− 1, a term µσ
(i)
k which is proportional to the error between desired global

value and actual global value is added. This yields the target utility values t̃(i). The calculation
of the target values thus has the form

t̃
(i)
k+1 = a

(ii)
k t

(i)
k +

∑

j∈N
(i)
k

a
(ij)
k t

(i)
k + µσ

(i)
k (54)

where Ak =
(
a(ij)

)
represents the distributed averaging scheme, σ

(i)
k is as defined in (51) for

Algorithm 2 and µ > 0 is a sufficiently small gain which is to be determined.
Each node then passes its target utility value to its controller, which (over a certain finite

time span) manipulates the physical state r(i) in order to drive the node’s utility value toward
its target value. After that control action, new target values will be calculated based on the
resulting new utility values as well as the value of the global function, and so on. This interplay
of calculating the target values and then adjusting the states accordingly is shown in Figure 4.

To leave this third approach as modular as possible, we will not specify any specific averaging
scheme or controller type. All that will be required for convergence is that it must be possible to
express the averaging scheme as multiplication by row-stochastic matrices with non-zero entries
uniformly bounded away from zero, and that the controllers reduce the control error to within
some specified range.

As in the previous two algorithms the questions is again: Does there exist a gain µ such that
the resulting system is stable and converges to the desired solution?

Theorem 5.1 : Consider the standard situation as described in the Notation section and assume
that the utility functions f (i) and the global function g are continuous and satisfy the growth
condition. Suppose that the communication structure of the network allows it to run a distributed
averaging scheme on the utility values. Furthermore, each node is assumed to use a controller that
is designed to adjust the node’s physical state in such a way as to drive its utility value towards
the target utility value.
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If the averaging scheme can be represented in each time step as a non-negative row-stochastic
matrix Ak whose graph is strongly connected and with all non-zero elements uniformly bounded
away from zero by some γ > 0, and if the controllers guarantee

αi
(
t
(i)
k − t̃

(i)
k+1

)
≤ t

(i)
k+1 − t̃

(i)
k+1 ≤ ᾱi

(
t
(i)
k − t̃

(i)
k+1

)
(55)

in each control phase for some constant α(i), ᾱ(i) which satisfy

−γ/(1− γ) < α(i) ≤ ᾱ(i) < 1 (56)

then a positive gain µ can be found for any initial condition rk=0 = r0, the system converges so
that tk → t∗1 and g(rk) → g∗.

Proof We will show that any algorithm under consideration here can be reduced to one considered
in Corollary 4.2. Satisfaction of the inequalities in (55) is equivalent to writing

t
(i)
k+1 − t̃

(i)
k+1 = β

(i)
k

(
t
(i)
k − t̃

(i)
k+1

)
with α(i) ≤ β

(i)
k ≤ ᾱ(i) (57)

that is,

t
(i)
k+1 = t

(i)
k +

(
1− β

(i)
k

)
(t̃

(i)
k+1 − t

(i)
k ) (58)

Recall that

t̃
(i)
k+1 = a

(ii)
k t

(i)
k +

∑

j∈N
(i)
k

a
(ij)
k t

(j)
k + µσ

(i)
k (59)

Since Ak is row-stochastic, we must have a
(ii)
k = 1−

∑

j∈N
(i)
k

a
(ij)
k and hence

t̃
(i)
k+1 − t

(i)
k =

∑

j∈N
(i)
k

a
(ij)
k (t

(j)
k − t

(i)
k ) + µσ

(i)
k (60)

Recalling (58) now results in

t
(i)
k+1 = t

(i)
k +

∑

j∈N
(i)
k

η
(ij)
k (t

(j)
k − t

(i)
k ) + µ

(i)
k σ

(i)
k (61)

where

η
(ij)
k = (1− β

(i)
k )a

(ij)
k and µ

(i)
k = (1− β

(i)
k )µ (62)

Thus the algorithm is an example of those considered in considered in Corollary 4.2. We now

show that the hypotheses of Corollary 4.2 hold. First note that η
(ij)
k ≥ (1− ᾱ(i))γ > 0; hence

η
(ij)
k ≥ ε1 where ε1 = γmin

i

{

(1 − ᾱ(i))
}

> 0 (63)
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We also note that

∑

j∈N
(i)
k

η
(ij)
k =

(
1− β

(i)
k

) ∑

j∈N
(i)
k

a
(ij)
k (64)

=
(
1− β

(i)
k

)

︸ ︷︷ ︸

≤ 1−α(i)

(
1− a

(ii)
k

)

︸ ︷︷ ︸

≤ 1−γ

(65)

≤ 1−
[
γ + α(i)(1− γ)

]
(66)

Since γ + α(i)(1− γ) > 0 for j ∈ N
(i)
k , we obtain the desired result that

∑

j∈N
(i)
k

η
(ij)
k ≤ 1− ε2 where ε2 = γ + (1− γ)min

i

{
α(i)

}
> 0 (67)

We also obtain that

0 < µ ≤ µ
(i)
k ≤ µ̄ (68)

where

µ = µmin
i

{

1− ᾱ(i)
}

and µ̄ = µmax
i

{

1− α(i)
}

(69)

So, clearly, µ̄ can be made sufficiently small by choosing µ sufficiently small. Application of
Corollary 4.2 concludes the proof of Theorem 5.1. �

Comment: It is easy to see that the lower bound in (56) is automatically fulfilled if the
controllers are designed to produce no overshoot.1

5.1 Simulations of Algorithm 3

The set-up used for our simulations of the third algorithm was the following. In a network on
n = 10 nodes the global functions were again of affine type (as for the simulations of Algorithm 1),
the utility functions, in turn, were of quadratic type (as for Algorithm 2).

The averaging scheme in this example was based on random, strongly connected row-stochastic
matrices with non-zero entries uniformly bounded below by γ = 0.02.

The controllers used were discrete-time implementations of PID and PI controllers,2 randomly
assigned to nodes, Visioli (2006). For both controller types the parameters were tuned as to
guarantee that the resulting closed loop system would not produce any overshoot. The gains in
the PI controllers were intentionally reduced somewhat in order to produce a slightly slower step
response and increase the heterogeneity between the controllers.

As for the plants (that is, the physical state updates) we chose first order low-pass filters (see for
instance Oppenheim et al. (1996)) with randomly chosen smoothing parameter ζ ∈ [0.55 , 0.85]
to simulate a system were the physical state cannot be changed instantly.3

1By “no overshooting” we mean that during each control phase the utility values never exceed the target values, that is if

for instance t
(i)
k

< t̃
(i)
k+1 then the utility value during that control phase will always be less than or equal to t̃

(i)
k+1.

2For easier implementation, we used the “velocity formulation”, that is the output of each controller is calculated recursively

with: u
(i)
k

= u
(i)
k−1 + kp

(

e
(i)
k

− e
(i)
k−1

)

+ ki e
(i)
k

+ kd
(

e
(i)
k

− 2e
(i)
k−1 + e

(i)
k−2

)

. For the PID-controllers, the parameters were set
to kp = 0.10, ki = 0.09 and kd = 0.03; for the PI-controllers in turn, kp = 0.02, ki = 0.05 and kd = 0.
3Specifically, the new states were calculated as r

(i)
k+1 = ζ(i)u

(i)
k

+ (1− ζ(i))r
(i)
k

.
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Figure 5. Step-response of the closed loop control part in the simulation of Algorithm 3.

To illustrate the behaviour of the resulting controller-plant combination (together with the
non-linear utility functions), a step response of the closed loop system is shown in Fig. 5: The
system was initialised with a physical state distribution such that all the utility values would be
equal. At kc = 10 the target utility values were then set to t̃(i) = 4.5. While the first two subplots
showing the global value and physical states are not of particular interest here, the third subplot
clearly reveals the two “groups” of nodes — those with the slower PI controllers and those with
the faster PID controllers. At kc = 30 (that is, after 20 control iterations), the error between
actual utility value and target value relative to the initial value is less than 0.1% for each node.

While this observation does not guarantee that the control error is less than 0.1% at the end
of every control phase (since the system is not necessarily in steady-state at the beginning of
each control phase) it is still reasonable to assume that the error is reduced sufficiently in order
to guarantee the bounds (56).

This closed loop based on 20 control iterations was then also used in the actual simulation of
a system operating according to Algorithm 3, shown in Fig. 6.

The dashed vertical lines in the third subplot indicate each time a new target utility value
was calculated. The global term was incorporated every (n − 1) · 20 = 180 time steps. Again,
consensus is reached on the utility values and the global term reaches its target value of g∗ = 0.44
as desired.
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Figure 6. Simulation of Algorithm 3.

6 Extension to asynchronous networks

Until now we have only considered networks where the state updates are all performed in a
synchronised fashion. That is, for a given time step k, the nodes first exchanged all the relevant
state information with each other, and then, jointly, performed the update based on the state
information at time k to reach the new state value at k+1. However, this perfectly synchronised
way of performing the updates may not always be easy to implement, or even guarantee at all.

In that regard, we now extend our above results to asynchronous communications and state
updates by no longer requiring the communication graphs representing the information flow in
the network to be strongly connected in each time step (as above), but rather only jointly strongly
connected over time, with a fixed and constant time horizon m ≥ 1. In other words, it is only
required that the union of any m consecutive graphs taken from that sequence must yield a
strongly connected graph. That way, the communication between nodes can be “staggered out”,
with nodes updating their state right after they have received information from a neighbour,
rather than having to wait until they have received the states from all their neighbours and until
all the other nodes are also “ready” to perform the (synchronised) update.

In each of our three results above, the update equations (or their transformed versions in
the proofs) contain a consensus term based on row-stochastic and primitive matrices. In case of
asynchronous updates, these matrices would also be row-stochastic, but not necessarily primitive.
Rather, they would contain a number of rows that only have a 1 in the main diagonal entry and
0 everywhere else (corresponding to nodes that have not received any state information from any
other nodes).

6.1 Asynchronous version of Algorithm 1

Corollary 6.1: The results of Theorem 3.1 still hold if the sequence of communication graphs
is jointly strongly connected over some finite and constant time horizon m ≥ 1.
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Proof Recall that the algorithm can be described by

tk+1 = Sktk + µ
[
g∗ − g(rk)

]
1 (70)

The proof of Theorem 3.1 relies on a convergence result given in Knorn et al. (2009), in par-
ticular Theorem 4.1 from that reference. The proof of the result in Knorn et al. (2009) involves
transforming (70) into

yk+1 = Skyk (71)

where yk has the form yk = tk − t̂k1 with t̂k =
∑k−1

i=0 µ
[
g∗ − g(ri)

]
, and then applying (Hartfiel

1998, Th. 1.9) (for which primitivity of the Sk is needed) to show that the elements in the state
vector approach each other over time and eventually become all equal. In the case of only jointly
strongly connected graphs we need to interpret the product of the Sk matrices as blocks of m
matrices multiplied together, since these “sub-products” yield primitive, row-stochastic matrices
(as the main diagonal entries in each matrix Sk are strictly positive). Additionally, since there
are only finitely many possible graph topologies on n nodes, there can only be finitely many
different m-blocks of Sk matrices, which implies a uniform, non-zero lower bound on the non-
zero matrix elements in all these m-blocks. Both properties allow us again to apply Theorem 1.9
from Hartfiel (1998) to (71) to show that the entries in yk approach each other over time and
eventually all become equal, which ultimately implies that the original system (10) converges to
a scalar system. The rest of the proof then follows again the lines of the proof of Theorem 3.1. �

6.2 Asynchronous version of Algorithms 2 and 3

Corollary 6.2: The results of Theorem 4.1 and Corollary 4.2 still hold if the sequence of
communication graphs is jointly strongly connected over some finite and constant time horizon
m ≥ 1, provided M = n− 1 is replaced with M = m(n− 1).

Proof Only a small modification to the proof of Theorem 4.1 and Corollary 4.2 is needed to show
the above result. For k̃ = 0, 1, . . . , let

S̃
k̃
= S(m+1)k̃−1 . . .Sk̃m (72)

Since all the Sk matrices are non-negative row-stochastic matrices with strictly positive diag-
onal elements, each matrix S̃

k̃
is row-stochastic, has positive diagonal elements and its graph

corresponds to the collection of communication graphs from time step k̃m to (m+1)k̃ − 1. As
any collection of m consecutive graphs is assumed to be jointly strongly connected, it follows
that S̃

k̃
is irreducible, and since it has positive diagonal elements, it is primitive and thus fully

indecomposable. The algorithm under consideration still satisfies (34) where

S̄l = S(l+1)M−1 . . .SlM ; (73)

However, here M = m(n−1). Thus,

S̄l = S̃(l+1)(n−1)−1 . . . S̃l(n−1) (74)

Having established the above properties of the S̃
k̃

matrices, the remainder of the proof follows
Theorem 4.1 or Corollary 4.2. �

Comment: The generalised forms of Algorithm 4.1 given by Corollaries 4.2 and 6.2 are
designed to tolerate certain communication problems. In the case of Corollary 4.2 this robustness
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is achieved at the cost of very small gains µ(i) on the global term; see (44). It is not difficult to see
that smaller gains produce slower convergence; see (45) and (49). However, various simulations
using sufficiently “general” graphs (rather than pathological cases like the directed n-cycle) have
shown that those gains can, in fact, be set significantly larger than required by the theoretical
results above, which suggests that these bounds are loose and may be improved on.

Our third algorithm can also be modified to accommodate for asynchronous communications
in the same manner as described above; simply let M = m(n− 1).

6.3 Simulations of Algorithm 2 with asynchronous communications and limited access to

global term

The communication graphs in the previous two simulations were, by design, all strongly con-
nected. For the simulations of the modification of the second algorithm as presented in the
corollary, we also used state-dependant disc graphs, but randomly removed, in each time step,
a number of edges in order to deliberately disconnect the graphs. The amount of edges removed
(in average 75% of the edges), however, was experimentally chosen in order to guarantee (almost
always) that every set of m = 3 consecutive graphs would form a jointly connected graph, as
required by the corollary. Thus, the updates using the global term were performed only every
3(n − 1) = 72 time steps.

Additionally, we also randomly prevented nodes from accessing the value of the global term (in
average, only 25% of the nodes were allowed to use the global term during at each global term
update step).

The results from the simulation under these harder conditions are shown in Fig. 7 and closely
resemble that of the previous case. Due to the less frequent updates, however, convergence to the
desired global value takes much longer but is achieved nonetheless.

r

Time step k

t

g(r)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
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Figure 7. Simulation of Algorithm 2 (corollary).



PR
EP

R
IN

T

9t
h 

M
ay

 2
01

1-
- 1

6:
37

9th May 2011 16:37 International Journal of Control paper_2_final

499

7 Conclusion

As shown in the literature review, consensus problems have attracted a large amount of attention
in recent years. The present paper’s contribution in that area are three different fully decentralised
cooperative control algorithms that not only allow a network to reach consensus either directly
or indirectly (that is, with or without utility functions involved), but also enable the nodes in
the network to cooperate and achieve a global, common goal that depends on all the aggregate
behaviour of the network.

Our first result concerned the well-controlled case where the utility functions and their inverses
are perfectly known a priori as the nodes need the inverse utility functions to calculate the
state updates. We noted that the algorithm presents a generalisation of the work reported in
Knorn et al. (2009) through the addition of a more general global term and the introduction of
utility functions.

The second contribution consisted of an algorithm that is less demanding on the problem
setting. All that needed to be known are upper and lower bounds on the growth rates of the
global- and utility functions, but not the functions themselves. Also, through Corollary 4.2, we
allowed for an even broader class of applications where not all nodes need to have access to the
global value.

Our third piece of work took a somewhat different approach. The idea consisted of decoupling
the adjusting of the physical state from the iterative calculation of desired values for the utility
values. This enabled us to cater for networks where the state cannot change instantly, where
only filtered versions of the state are available, but, probably most importantly, where different
nodes may have completely different dynamics and controllers. The key property required for
convergence in these networks was that the controllers must be designed so that they drive the
physical states / utility values (in finite time) to within a certain range of the calculated target
utility values.

Each of the three algorithms was accompanied by simulation results that demonstrated the
effectiveness of our approach, and they were then extended to the case of asynchronous commu-
nications and state updates.

While our results are certainly promising, a number of open questions remain and should be
the subject of further investigations. For instance, the gain µ in the second and third algorithm
may become very small in larger networks, and there is much experimental evidence that the
bounds presented here tend to be rather conservative. This can be explained, in part, by the
fact that for sufficiently connected graphs (and not pathological worst-case scenarios such as, for
example, directed n-cycles) significantly less than n−1 multiplications in (30) would be required
to produce strictly positive S̄ matrices — which in turn means that the corresponding smin

value in (40) would be much larger and ultimately allows µ to be increased. One possible future
extension of our work that accounts for unlikely topological effects is via a stochastic formulation
of this problem. Here, expected quantities are controlled rather than deterministic ones.

Also, in the second and third algorithm, the nodes incorporate the global term in their state
updates term every M steps. We will show in that in fact nodes can include the global term in
every time step, which should speed up convergence. Notions of “eventually positive” matrices
are required in this context.

A third important open question concerns intermittent feedback of the global quantity of
interest. Thus, the graph may operate either in an open- or closed loop setting. This immediately
draws parallels to classical Lur’e problems, see for instance Khalil (1992). Future work will involve
investigating whether such a formulation will indeed lead to useful insights.

Other open questions in a problem setting as encountered here concern the effect of commu-
nication delays, quantisation effects when using finite precision arithmetics (for instance when
implementing our algorithms on digital processors without floating point precision) or the effect
of nodes joining or leaving the network. These issues may possibly be addressed using ideas from
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previous (unconstrained consensus) literature such as Kashyap et al. (2007), Nedić and Ozdaglar
(2010).

Also, the present work only considers a single physical state and single utility value associated
with each node; in a more general setting, nodes could have two or more states associated with
them. This leads to a MIMO-like formulation of our problem.
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Appendix A: An expression for the global term

Given global and utility functions which satisfy the growth conditions, we show here that, for
any t, t∗ ∈ R

n,

g
(
φ(t∗)

)
− g

(
φ(t)

)
=

n∑

i=1

c(i)
(
t
(i)
∗ − t(i)

)
where

h (i)

d̄ (i)
≤ c(i) ≤

h̄ (i)

d(i)
(A1)

http://www.red3d.com/cwr/boids/
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Letting r = φ(t) and r∗ = φ(t∗), we start by showing that ∆g := g
(
φ(t∗)

)
− g

(
φ(t)

)
=

g(r∗)− g(r) can be expressed as

∆g =

n∑

i=1

c̃(i)∆r(i) where h(i) ≤ c̃(i) ≤ h̄(i) (A2)

and ∆r(i) = r
(i)
∗ −r(i). The change ∆g corresponds to the change of the value of the global function

when moving from r to r∗. Now, instead of going “directly” from r to r∗ we can also reach r∗ by
only changing one coordinate at a time, that is we basically break up the “cumulative change”
∆g into the changes caused by moving along each coordinate. To express this mathematically,
we recursively define the vectors r0, . . . , rn by

r0 = r and ri = ri−1 +∆r(i)ei for i = 1, . . . n . (A3)

Clearly, the ri vectors correspond to the “corner points” of the “path” if one starts at r and
then moves by ∆r(1) along the first dimension, then by ∆r(2) along the second and so on. By
construction, in the end rn = r∗.

As a consequence of the growth properties of g, we have

g(ri)− g(ri−1) = g(ri−1 +∆r(i)ei)− g(ri−1) = c̃(i)∆r(i) where h(i) ≤ c̃(i) ≤ h̄(i) (A4)

and since

∆g = g(rn)− g(r0) =

n∑

i=1

[
g(ri)−g(ri−1)

]
(A5)

the result (A2) now follows.
Next, we replace the difference r∗− r by the corresponding difference t∗− t. As a consequence

of the growth properties of the utility functions f (i), we have

f (i)(r
(i)
∗ )− f (i)(r(i)) = d(i)(r

(i)
∗ − r(i)) = d(i)∆r(i) where 0 < d(i) ≤ d(i) ≤ d̄ (i) (A6)

Since t(i) = f (i)(r(i)) and t
(i)
∗ = f (i)(r

(i)
∗ ) we see that t

(i)
∗ − t(i) = d(i)∆r(i); hence

∆r(i) =
t
(i)
∗ − t(i)

d(i)
where 0 < d(i) ≤ d(i) ≤ d̄ (i) (A7)

Combining (A2) and (A7) now yields the desired result (A1).

Appendix B: Global- and utility functions used in our simulations

For some simulations, the utility functions were chosen to be of quadratic form on the interval
[ 0 , 1.5 ], and linear outside this range. Specifically, the functions were of the form

t(i) =







α
(i)
1 (r(i))2 + α

(i)
2 r(i) + α

(i)
3 if 0 ≤ r(i) ≤ 1.5

β
(i)
1 r(i) + β

(i)
2 if r(i) < 0

β
(i)
3 r(i) + β

(i)
4 otherwise

(B1)
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Figure B1. Utility functions t(i) = f(i)(r(i)) used in the simulations demonstrating Algorithms 1 and 2.

where the coefficients α
(i)
1 , α

(i)
2 , α

(i)
3 were chosen within appropriate bounds to guarantee invert-

ibility on the interval [ 0 , 1.5 ]. The coefficients β
(i)
1 , . . . , β

(i)
4 where also chosen randomly, but in

such a way as to guarantee that the overall function would be continuous (i. e. that the linear
segments join up with the quadratic part). A set of 25 randomly generated functions of this type
are shown in Fig. B1(a).

In other simulations we used piecewise linear utility functions, shown in Fig. B1(b), also chosen
at random.

The global functions used were also either of quadratic form g(r) = d+
∑n

i=1 q
(i)
(
r(i)

)
where

the q(i) were of a similar type as (B1), or of affine form g(r) = d +
∑n

i=1 c
(i)r(i), also with

randomly chosen parameters c(i) > 0 and d > 0.
All random parameters were chose within bounds, from which the required growth conditions

for the theorems were derived.


