

PROTEIN INTERACTION NETWORKS, ESSENTIALITY AND SENSITIVTY

FLORIAN KNORN* AND OLIVER MASON[†]

* Otto-von-Guericke-Universität Magdeburg, Germany [†] Hamilton Institute, NUI Maynooth, Ireland

1. Motivation

- Protein-Protein-Interactions (PPI) describe key biological processes
- New measurement techniques
 - unprecedented amounts of data
- Data representation by graphs (networks):
 - **Nodes:** Proteins
 - **Edges**: Interactions between proteins

Key question: "Which proteins are important / essential?"

Fig. 1: PPI Network of S. Cerevisiae. Data set by Uetz et al., [1]

6. Results from simulated graphs

Use ranking algorithms and centrality measures to identify important nodes.

Problem: Real data usually noisy / inaccurate / incomplete !

In this poster, based on the work in [2], we evaluate

- the **ability** of different ranking algorithms to **identify** essential proteins
- the **impact** of inaccurate data on these algorithms using
 - simulated networks (Barabási-Albert random graphs)
 - real data (PPI network of Saccharomyces Cerevisiae, data set by Uetz et al.)

2. Scale-free random graphs

- Seminal graph model by A.-L. Barabási and R. Albert, [3], that is based on growth
- Generated by an **iterative process**:
 - Start with small, connected graph
 - At each step: add in **one** node and **m** edges using **preferential attachement**
- Characteristics:
 - Many nodes with few connections, but a few highly connected "hubs"
 - Scale free: No characteristic node degree (exponential degree distribution)
 - **Ultra small world**: very short average path lengths
- Used to model many **real world networks**: WWW, phone networks, PPIN, ... [4]

3. Ranking schemes and essentiality

Fig. 2: Scale-free graph, deviation measure 1)

Fig. 4: Scale-free graph, deviation measure ③

7. Results from real data

- Used the largest connected component of the Uetz et al. data set. It contains 558 proteins and 646 interactions; 22.6% of proteins are known to be essential
- Introduced **increasing** amounts of perturbation; results are averages from 50 runs
- Took top 5% off each ranking and calculated **fraction of essential proteins**

Fig. 3: Scale-free graph, deviation measure ②

- Results from 250 repetitions, using scale-free random graphs with 3000 nodes and \approx 9000 edges
- Odd behaviours of EX (Δ) result from disconnection of the graphs
- ST (\diamond) and CV (\bullet) are almost always identical (this is no surprise, it follows from their definition)
- PR (\Box) and ND (\times) seem to be generally most robust
- However: in Fig. 4 (b) HITS and the centrality based measures perform clearly better

Idea: identify the "important" nodes by establishing some form of node ranking, for instance by attributing some sort of "score" to each node and then sorting by it.

- Notion of "importance" depends on the interpretation and also the application
 - × Node degrees (ND) * Damage (DA) Status (ST) PageRank (PR) \triangle Excentricity (EX) O HITS (HI) Centroid value (CV)

Question: Taking the top 1%, 5%, 10% and 25% of proteins from the top of the rankings, what is the fraction of **actually essential** proteins in that set (using truth data)?

Scheme Top %	ND	HI	PR	EX	ST	CV	DA
1 %	83.3	50.0	83.3	39.1	33.3	33.3	66.7
5 %	48.4	35.7	46.4	24.6	17.2	17.2	44.0
10 %	34.4	28.6	39.3	24.6	26.8	26.8	33.9
25 %	31.5	27.2	32.6	24.8	26.8	26.8	30.6

Tab. 1: Comparison of the algorithm's abilities to identify essential nodes in the Uetz et al. data set when considering the top 1%, 5%, 10% or 25% of the rankings as "essential". Bold: best value in row; canceled: value even below overall fraction of essential proteins

4. Network perturbations

Among others, we evaluated these types of perturbations on the network:

- Edge removal
- Edge addition

Scheme Perturb. %	ND	н	PR	EX	ST	CV	DA
0 %	48.4	35.7	46.4	24.6	17.2	17.2	44.0
5 %	48.6	35.2	44.6	20.6	19.1	19.1	41.4
10 %	45.3	35.9	44.6	18.8	18.9	18.9	42.1
15 %	46.3	36.8	44.4	19.1	19.1	19.1	41.4
20 %	47.1	37.2	45.2	16.8	16.8	16.8	40.6

Tab. 2: Perturbation: Edge removal. Comparison of the fraction of correctly identified proteins with increasing amounts of perturbation.

Scheme Perturb. %	ND	HI	PR	EX	ST	CV	DA
0 %	48.4	35.7	46.4	24.6	17.2	17.2	44.0
5 %	48.3	37.2	45.6	26.3	23.2	23.2	37.0
10 %	47.9	38.9	46.7	22.7	21.7	21.7	37.0
15 %	47.1	40.1	46.6	20.4	20.4	20.4	37.2
20 %	46.3	39.7	47.0	19.6	19.4	19.4	36.2

Tab. 3: Perturbation: Edge rewiring.

Scheme Perturb. %	ND	н	PR	EX	ST	CV	DA
0 %	48.4	35.7	46.4	24.6	17.2	17.2	44.0
5 %	47.6	37.1	45.4	23.6	19.7	19.7	37.6
10 %	46.5	38.9	45.2	29.8	26.1	26.1	35.7
15 %	46.1	40.2	45.1	27.9	28.3	28.3	35.0
20 %	45.7	41.9	46.4	27.4	29.7	29.7	34.5

Tab. 4: Perturbation: Edge addition.

ND most successful, consistent *and* fairly robust in detecting essential proteins

Edge rewiring

Node removal

5. Deviation measures

Several notions of deviation have been explored. Here, we will display the following:

- How **important really are** highly ranked from the perturbed network
- (2)The chance of **seemingly** important nodes to be, in fact, **not important**
- The chance of important nodes **not to be identified** as such
- The first measure is calculated using the actual **ranks** of the top 5% of nodes
- The other two only compare intersections of the sets of the top 5% of nodes from both rankings (that is of the perturbed and unperturbed graphs)

[1] Peter Uetz and Loic Giot. A comprehensive analysis of protein–protein interactions in saccharomyces cerevisiae. *Nature*, 403:623–627, February 2000. [2] Florian Knorn. Ranking and importance in complex networks. Studienarbeit, October 2005.

- **PR** second best for detection of essentiality, but **most robust**
- HITS second most robust; centrality based measures rather sensible and only give low detection rates, often performing worse than would purely random picks!

8. Future directions

- Evaluate **more structured** perturbations, or **combinations** of perturbations
- Find more **theoretical results** on the robustness of the different algorithms
- Investigate damage on larger data sets, as it showed some promising results

More extensive results and analysis on other data sets can be found in [2].

[3] Albert-László Barabási and Réka Z. Albert. Emergence of scaling in random networks. Science, 286(5439):509–512, October 1999. [4] Réka Z. Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1):47–96, January 2002.

Work funded by Science Foundation Ireland grants 04/IN1/I478 and 03/RP1/I382 as well as the German National Academic Foundation.